Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040204    DOI: 10.1088/1674-1056/acaf2c
GENERAL Prev   Next  

Local density of optical states calculated by the mode spectrum in stratified media

Ting Fu(傅廷)1,3, Jingxuan Chen(陈静瑄)1,3, Xueyou Wang(王学友)1, Yingqiu Dai(戴迎秋)1,2, Xuyan Zhou(周旭彦)1,5,†, Yufei Wang(王宇飞)1,2,‡, Mingjin Wang(王明金)1, and Wanhua Zheng(郑婉华)1,2,3,4,§
1 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
5 Weifang Academy of Advanced Opto-electronic Circuits, Weifang 261021, China
Abstract  The local density of optical states (LDOS) is an important physical concept, which can characterize the spontaneous emission of microcavities. In order to calculate the LDOS, the relationship between the mode spectrum and the LDOS is established. Then, based on the transfer matrix method and the effective resonator model, the leaky loss of the leaky mode and the mode spectrum in the one-dimensional photonic bandgap crystal waveguide are calculated, results of which indicate that the mode spectrum can characterize the leaky loss of the leaky mode. At last, the density of optical states (DOS), and the LDOS in each layer are calculated. The partial DOS and the partial LDOS in the quantum well, related to the fundamental leaky mode, can be used to find out the optimal location of the quantum well in the defect layer to couple more useful photons into the lasing mode for lasers.
Keywords:  local density of optical states      mode spectrum      transfer matrix method  
Received:  22 September 2022      Revised:  16 December 2022      Accepted manuscript online:  30 December 2022
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400604 and 2021YFB2801400) and the National Natural Science Foundation of China (Grant Nos. 91850206, 62075213, 62135001, and 62205328).
Corresponding Authors:  Xuyan Zhou, Yufei Wang, Wanhua Zheng     E-mail:  zhouxuyan@semi.ac.cn;yufeiwang@semi.ac.cn;whzheng@semi.ac.cn

Cite this article: 

Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华) Local density of optical states calculated by the mode spectrum in stratified media 2023 Chin. Phys. B 32 040204

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] Fan S, Villeneuve P R, Joannopoulos J D and Schubert E F 1997 Phys. Rev. Lett. 78 3294
[3] Purcell E M 1946 Phys. Rev. 69 674
[4] Sprik R, van Tiggelen B A and Lagendijk A 1996 Europhys. Lett. 35 265
[5] de Dood M J A, Slooff L H, Polman A, Moroz A and van Blaaderen A 2001 Phys. Rev. A 64 033807
[6] Wang Q, Stobbe S and Lodahl P 2011 Phys. Rev. Lett. 107 167404
[7] Jiang B, Zhang Y J, Zhou W J, Chen W, Liu A J and Zheng W H 2011 Chin. Phys. B 20 24208
[8] McPhedran R C, Botten L C, McOrist J, Asatryan A A, de Sterke C M and Nicorovici N A 2004 Phys. Rev. E 69 016609
[9] Pickering T, Hamm J M, Page A F, Wuestner S and Hess O 2014 Nat. Commun. 5 4972
[10] Vahala K J 2003 Nature 424 839
[11] Mignuzzi S, Vezzoli S, Horsley S A R, Barnes W L, Maier S A and Sapienza R 2019 Nano Lett. 19 1613
[12] Martín-Jiménez A, Fernández-Domínguez A I, Lauwaet K, Granados D, Miranda R, García-Vidal F J and Otero R 2020 Nat. Commun. 11 1021
[13] Moroz A 1999 Europhys. Lett. 46 419
[14] Wubs M and Lagendijk A 2002 Phys. Rev. E 65 046612
[15] Yeganegi E, Lagendijk A, Mosk A P and Vos W L 2014 Phys. Rev. B 89 045123
[16] Mavidis C P, Tasolamprou A C, Hasan S B, Koschny T, Economou E N, Kafesaki M, Soukoulis C M and Vos W L 2020 Phys. Rev. B 101 235309
[17] Losquin A and Kociak M 2015 ACS Photon. 2 1619
[18] Zu S, Han T, Jiang M, Lin F, Zhu X and Fang Z 2018 ACS Nano 12 3908
[19] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X and Fang Z 2019 Nano Lett. 19 775
[20] Asatryan A A, Busch K, McPhedran R C, Botten L C, Martijn de Sterke C and Nicorovici N A 2001 Phys. Rev. E 63 046612
[21] Huang Y G, Fan H and Wang X H 2010 Chin. Phys. Lett. 27 104213
[22] Forati E 2022 IEEE J. Multiscale Multiphys. Comput. Tech. 7 46
[23] Rudziński A, Tyszka-Zawadzka A and Szczepański P 2005 Proc. SPIE, October 12, 2005, Warsaw, Poland, p. 59501A
[24] Rudziński A 2007 Acta Phys. Pol. A 111 323
[25] Rudziński A, Tyszka-Zawadzka A and Szczepański P 2007 Opt. Quantum Electron. 39 501
[26] Rudziński A and Szczepański P 2010 Photon. Lett. Pol. 2 79
[27] Baradaran Ghasemi A H, Khorasani S, Latifi H and Atabaki A H 2010 Wave. Random Complex 20 419
[28] Yeh P 1988 Optical Waves in Layered Media (New York: John Wiley & Sons) pp. 102-117
[29] Carminati R, Cazé A, Cao D, Peragut F, Krachmalnicoff V, Pierrat R and De Wilde Y 2015 Surf. Sci. Rep. 70 1
[30] Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107
[31] Benech P, Khalil D A M and André F S 1992 Opt. Commun. 88 96
[32] Gerard P, Benech P, Ding H and Rimet R 1994 Opt. Commun. 108 235
[33] Ledentsov N N and Shchukin V A 2002 Opt. Eng. 41 3193
[34] Maximov M V, Shernyakov Y M, Novikov I I, Karachinsky L Y, Gordeev N Y, Ben-Ami U, Bortman-Arbiv D, Sharon A, Shchukin V A, Ledentsov N N, Kettler T, Posilovic K and Bimberg D 2008 IEEE J. Sel. Top. Quantum Electron. 14 1113
[35] Liu L, Qu H, Liu Y, Zhang Y, Wang Y, Qi A and Zheng W 2014 Appl. Phys. Lett. 105 231110
[36] Chen Z, Qi A, Zhou X, Qu H, Chen J, Jia Y and Zheng W 2021 IEEE Photon. Technol. Lett. 33 399
[37] Benech P and Khalil D 1995 Opt. Commun. 118 220
[38] Hu J and Menyuk C R 2009 Adv. Opt. Photon. 1 58
[39] Zhu L, Scherer A and Yariv A 2007 IEEE J. Quantum Electron. 43 934
[40] Alvarado-Rodríguez I, Halevi P and Sánchez-Mondragón J J 1999 Phys. Rev. E 59 3624
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[3] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[4] Two-color light-emitting diodes with polarization-sensitive high extraction efficiency based on graphene
H Sattarian, S Shojaei, E Darabi. Chin. Phys. B, 2016, 25(5): 058504.
[5] Surface states in crystals with low-index surfaces
Wang Hui-Ping (王会平), Tao Rui-Bao (陶瑞宝). Chin. Phys. B, 2015, 24(11): 117301.
[6] Complete eigenmode analysis of a ladder-type multiple-gap resonant cavity
Zhang Chang-Qing (张长青), Ruan Cun-Jun (阮存军), Zhao Ding (赵鼎), Wang Shu-Zhong (王树忠), Yang Xiu-Dong (杨修东). Chin. Phys. B, 2014, 23(8): 088401.
[7] Rectification effect in asymmetric Kerr nonlinear medium
Liu Wan-Guo (刘晚果), Pan Feng-Ming (潘风明), Cai Li-Wei (蔡力伟). Chin. Phys. B, 2014, 23(6): 064213.
[8] Optical properties of the electromagnetic waves propagating in an elliptical cylinder multilayer structure
A. Abdoli-Arani. Chin. Phys. B, 2014, 23(3): 034211.
[9] Analytical study of surface states caused by the edge decoration
Zhao Yuan-Yuan(赵媛媛), Li Wei(李炜), and Tao Rui-Bao(陶瑞宝) . Chin. Phys. B, 2012, 21(2): 027302.
[10] Photon tunneling and transmittance resonance through a multi-layer structure with a left-handed material
He Ying (何英), Zhang Xia (张霞), Yang Yan-Fang (杨艳芳), Li Chun-Fang (李春芳). Chin. Phys. B, 2011, 20(5): 054103.
[11] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[12] Quantum reflection as the reflection of subwaves
Yuan Wen(袁文), Yin Cheng(殷澄), Wang Xian-Ping(王贤平), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(9): 093402.
[13] Energy eigenvalues from an analytical transfer matrix method
He Ying(何英), Zhang Fan-Ming(张凡明), Yang Yan-Fang(杨艳芳), and Li Chun-Fang(李春芳). Chin. Phys. B, 2010, 19(4): 040306.
[14] The analytical transfer matrix method for quantum reflection
Xu Tian(许田), Cao Zhuang-Qi(曹庄琪), and Fang Jing-Huai(方靖淮). Chin. Phys. B, 2010, 19(4): 040307.
[15] On the tunneling time of arbitrary continuous potentials and the Hartman effect
Yin Cheng(殷澄), Wu Zhi-Jing(吴至境), Wang Xian-Ping(王贤平), Sun Jing-Jing(孙晶晶), and Cao Zhuang-Qi(曹庄琪). Chin. Phys. B, 2010, 19(11): 117305.
No Suggested Reading articles found!