|
|
Local density of optical states calculated by the mode spectrum in stratified media |
Ting Fu(傅廷)1,3, Jingxuan Chen(陈静瑄)1,3, Xueyou Wang(王学友)1, Yingqiu Dai(戴迎秋)1,2, Xuyan Zhou(周旭彦)1,5,†, Yufei Wang(王宇飞)1,2,‡, Mingjin Wang(王明金)1, and Wanhua Zheng(郑婉华)1,2,3,4,§ |
1 Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 5 Weifang Academy of Advanced Opto-electronic Circuits, Weifang 261021, China |
|
|
Abstract The local density of optical states (LDOS) is an important physical concept, which can characterize the spontaneous emission of microcavities. In order to calculate the LDOS, the relationship between the mode spectrum and the LDOS is established. Then, based on the transfer matrix method and the effective resonator model, the leaky loss of the leaky mode and the mode spectrum in the one-dimensional photonic bandgap crystal waveguide are calculated, results of which indicate that the mode spectrum can characterize the leaky loss of the leaky mode. At last, the density of optical states (DOS), and the LDOS in each layer are calculated. The partial DOS and the partial LDOS in the quantum well, related to the fundamental leaky mode, can be used to find out the optimal location of the quantum well in the defect layer to couple more useful photons into the lasing mode for lasers.
|
Received: 22 September 2022
Revised: 16 December 2022
Accepted manuscript online: 30 December 2022
|
PACS:
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400604 and 2021YFB2801400) and the National Natural Science Foundation of China (Grant Nos. 91850206, 62075213, 62135001, and 62205328). |
Corresponding Authors:
Xuyan Zhou, Yufei Wang, Wanhua Zheng
E-mail: zhouxuyan@semi.ac.cn;yufeiwang@semi.ac.cn;whzheng@semi.ac.cn
|
Cite this article:
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华) Local density of optical states calculated by the mode spectrum in stratified media 2023 Chin. Phys. B 32 040204
|
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [2] Fan S, Villeneuve P R, Joannopoulos J D and Schubert E F 1997 Phys. Rev. Lett. 78 3294 [3] Purcell E M 1946 Phys. Rev. 69 674 [4] Sprik R, van Tiggelen B A and Lagendijk A 1996 Europhys. Lett. 35 265 [5] de Dood M J A, Slooff L H, Polman A, Moroz A and van Blaaderen A 2001 Phys. Rev. A 64 033807 [6] Wang Q, Stobbe S and Lodahl P 2011 Phys. Rev. Lett. 107 167404 [7] Jiang B, Zhang Y J, Zhou W J, Chen W, Liu A J and Zheng W H 2011 Chin. Phys. B 20 24208 [8] McPhedran R C, Botten L C, McOrist J, Asatryan A A, de Sterke C M and Nicorovici N A 2004 Phys. Rev. E 69 016609 [9] Pickering T, Hamm J M, Page A F, Wuestner S and Hess O 2014 Nat. Commun. 5 4972 [10] Vahala K J 2003 Nature 424 839 [11] Mignuzzi S, Vezzoli S, Horsley S A R, Barnes W L, Maier S A and Sapienza R 2019 Nano Lett. 19 1613 [12] Martín-Jiménez A, Fernández-Domínguez A I, Lauwaet K, Granados D, Miranda R, García-Vidal F J and Otero R 2020 Nat. Commun. 11 1021 [13] Moroz A 1999 Europhys. Lett. 46 419 [14] Wubs M and Lagendijk A 2002 Phys. Rev. E 65 046612 [15] Yeganegi E, Lagendijk A, Mosk A P and Vos W L 2014 Phys. Rev. B 89 045123 [16] Mavidis C P, Tasolamprou A C, Hasan S B, Koschny T, Economou E N, Kafesaki M, Soukoulis C M and Vos W L 2020 Phys. Rev. B 101 235309 [17] Losquin A and Kociak M 2015 ACS Photon. 2 1619 [18] Zu S, Han T, Jiang M, Lin F, Zhu X and Fang Z 2018 ACS Nano 12 3908 [19] Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X and Fang Z 2019 Nano Lett. 19 775 [20] Asatryan A A, Busch K, McPhedran R C, Botten L C, Martijn de Sterke C and Nicorovici N A 2001 Phys. Rev. E 63 046612 [21] Huang Y G, Fan H and Wang X H 2010 Chin. Phys. Lett. 27 104213 [22] Forati E 2022 IEEE J. Multiscale Multiphys. Comput. Tech. 7 46 [23] Rudziński A, Tyszka-Zawadzka A and Szczepański P 2005 Proc. SPIE, October 12, 2005, Warsaw, Poland, p. 59501A [24] Rudziński A 2007 Acta Phys. Pol. A 111 323 [25] Rudziński A, Tyszka-Zawadzka A and Szczepański P 2007 Opt. Quantum Electron. 39 501 [26] Rudziński A and Szczepański P 2010 Photon. Lett. Pol. 2 79 [27] Baradaran Ghasemi A H, Khorasani S, Latifi H and Atabaki A H 2010 Wave. Random Complex 20 419 [28] Yeh P 1988 Optical Waves in Layered Media (New York: John Wiley & Sons) pp. 102-117 [29] Carminati R, Cazé A, Cao D, Peragut F, Krachmalnicoff V, Pierrat R and De Wilde Y 2015 Surf. Sci. Rep. 70 1 [30] Bendickson J M, Dowling J P and Scalora M 1996 Phys. Rev. E 53 4107 [31] Benech P, Khalil D A M and André F S 1992 Opt. Commun. 88 96 [32] Gerard P, Benech P, Ding H and Rimet R 1994 Opt. Commun. 108 235 [33] Ledentsov N N and Shchukin V A 2002 Opt. Eng. 41 3193 [34] Maximov M V, Shernyakov Y M, Novikov I I, Karachinsky L Y, Gordeev N Y, Ben-Ami U, Bortman-Arbiv D, Sharon A, Shchukin V A, Ledentsov N N, Kettler T, Posilovic K and Bimberg D 2008 IEEE J. Sel. Top. Quantum Electron. 14 1113 [35] Liu L, Qu H, Liu Y, Zhang Y, Wang Y, Qi A and Zheng W 2014 Appl. Phys. Lett. 105 231110 [36] Chen Z, Qi A, Zhou X, Qu H, Chen J, Jia Y and Zheng W 2021 IEEE Photon. Technol. Lett. 33 399 [37] Benech P and Khalil D 1995 Opt. Commun. 118 220 [38] Hu J and Menyuk C R 2009 Adv. Opt. Photon. 1 58 [39] Zhu L, Scherer A and Yariv A 2007 IEEE J. Quantum Electron. 43 934 [40] Alvarado-Rodríguez I, Halevi P and Sánchez-Mondragón J J 1999 Phys. Rev. E 59 3624 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|