Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084206    DOI: 10.1088/1674-1056/ad4630
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system

Jialing Yang(杨嘉玲)1, Aoqian Shi(史奥芊)1, Yuchen Peng(彭宇宸)1, Peng Peng(彭鹏)1, and Jianjun Liu(刘建军)1,2,†
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
Abstract  We have introduced a new approach to calculate the orbital angular momentum (OAM) of bound states in continuum (BICs) and below-continuum-resonance (BCR) modes in the rotational periodic system nested inside and outside by transforming the Bloch wave number from the translational periodic system. We extensively classify and study these BICs and BCR modes, which exhibit high-quality (high-$Q$) factors, in different regions relative to the interface of the system. These BICs and BCR modes with a high-$Q$ factor have been studied in detail based on distinctive structural parameters and scattering theory. The outcomes of this research break the periodic limitation of interface state-based BICs, and realize more and higher symmetry interface state-based BICs and BCR modes. Moreover, we can control the region where light is captured by adjusting the frequency, and show that the $Q$ factor of BICs is more closely related to the ordinal number of rings and the rotational symmetry number of the system.
Keywords:  bound states in the continuum      below continuum resonance modes      high-quality factors  
Received:  25 February 2024      Revised:  24 April 2024      Accepted manuscript online:  02 May 2024
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 61405058 and 62075059), the Natural Science Foundation of Hunan Province (Grant Nos. 2017JJ2048 and 2020JJ4161), and the Scientific Research Foundation of Hunan Provincial Education Department (Grant No. 21A0013), the Open Project of State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No. 2024GZKF20), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515011353).
Corresponding Authors:  Jianjun Liu     E-mail:  jianjun.liu@hnu.edu.cn

Cite this article: 

Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军) Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system 2024 Chin. Phys. B 33 084206

[1] Schult R L, Ravenhall D G and Wyld H W 1989 Phys. Rev. B 39 5476
[2] Hsu C W, Zhen B, Chua S L, Johnson S G, Joannopoulos J D and Soljačić M 2013 Light Sci. Appl. 2 e84
[3] Zhang Y W, Chen A, Liu W Z, Hsu C W, Wang B, Guan F, Liu X H, Shi L, Lu L and Zi J 2018 Phys. Rev. Lett. 120 186103
[4] Robnik M 1986 J. Phys. A: Math. Gen. 19 3845
[5] Bulgakov E N and Sadreev A F 2014 Phys. Rev. A 90 053801
[6] Bulgakov E N and Sadreev A F 2017 Phys. Rev. A 96 013841
[7] Sadrieva Z F, Belyakov M A, Balezin M A, Kapitanova P V, Nenasheva E A, Sadreev A F and Bogdanov A A 2019 Phys. Rev. A 99 053804
[8] Lu C C, Wang C Y, Xiao M, Zhang Z Q and Chan C T 2021 Phys. Rev. Lett. 126 113902
[9] Shi A Q, Peng Y W, Jiang J P, Peng Y C, Peng P, Chen J Z, Chen H S, Wen S C, Lin X, Gao F and Liu J J 2024 Laser Photonics Rev. 18 2300956
[10] Yan B, Peng Y W, Xie J L, Peng Y C, Shi A Q, Li H, Gao F, Peng P, Jiang J P, Liu J J, Gao F and Wen S C 2024 Laser Photonics Rev. 18 2470035
[11] Yang Y, Peng C, Liang Y, Li Z B and Noda S 2014 Phys. Rev. Lett. 113 37401
[12] Bulgakov E N and Sadreev A F 2016 Phys. Rev. A 94 033856
[13] Hu Z and Lu Y Y 2018 J. Phys. B 51 035402
[14] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401
[15] Doeleman H M, Monticone F, Hollander W D, Alù A and Koenderink A F 2018 Nat. Photonics 12 397
[16] Neumann J V and Wigner E P 1929 Phys. Z. 30 465
[17] Ursell F 1987 J. Fluid Mech. 183 421
[18] Evans D V and Linton C M 2006 J. Fluid Mech. 225 153
[19] Jiang X W, Fang B and Zhan C L 2024 Chin. Phys. B 33 034206
[20] Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Ren J and Chen H 2019 Phys. Rev. Appl. 12 014028
[21] Zeng J and Li Z Y 2022 Chin. Phys. B 31 043202
[22] Wang J J, Shi L and Zi J 2022 Phys. Rev. Lett. 129 236101
[23] Wu F, Liu T T, Long Y, Xiao S Y and Chen G Y 2023 Phys. Rev. B 107 165428
[24] Evans D V, Levitin M and Vassiliev D 1994 J. Fluid Mech. 261 21
[25] Longhi S 2006 Eur. Phys. J. B 57 45
[26] Bulgakov E N and Sadreev A F 2018 Phys. Rev. B 98 085301
[27] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A and Segev M 2011 Phys. Rev. Lett. 107 183901
[28] Cerjan A, Hsu C W and Rechtsman M C 2019 Phys. Rev. Lett. 123 023902
[29] Ardizzone V, Riminucci F, Zanotti S, Gianfrate A, Efthymiou-Tsironi M, Suàrez-Forero D G, Todisco F, De Giorgi M, Trypogeorgos D, Gigli G, Baldwin K, Pfeiffer L, Ballarini D, Nguyen H S, Gerace D and Sanvitto D 2022 Nature 605 447
[30] Chen Y, Deng H, Sha X, Chen W J, Wang R, Chen Y H, Wu D, Chu J, Kivshar Y S, Xiao S and Qiu C W 2023 Nature 613 474
[31] Xiao S S and Qiu M 2005 Phys. Lett. A 340 474
[32] Han H L, Lü H B and Liu X 2018 Opt. Lett. 43 5403
[33] Bulgakov E N and Sadreev A F 2018 Phys. Rev. A 97 033834
[34] Molina M I, Miroshnichenko A E and Kivshar Y S 2012 Phys. Rev. Lett. 108 070401
[35] Corrielli G, Della Valle G, Crespi A, Osellame R and Longhi S 2013 Phys. Rev. Lett. 111 220403
[36] Longhi S and Della Valle G 2013 J. Phys. C: Cond. Mat. 25 235601
[37] Chai J W, Liu L, Hu P, Xiang H and Han D Z 2020 Opt. Lett. 45 5652
[38] Wang W H, Srivastava Y K, Tan T C W, Wang Z and Singh R 2023 Nat. Commun. 14 2811
[39] Wu L H and Hu X 2015 Phys. Rev. Lett. 114 223901
[40] Yoda T and Notomi M 2020 Phys. Rev. Lett. 125 053902
[41] Huang X Q, Xiao M, Zhang Z Q and Chan C T 2014 Phys. Rev. B 90 075423
[42] Horvath H 2009 J. Quant. Spectrosc. Radiat. Transfer 110 787
[43] Maystre D, Enoch S and Tayeb G 2006 Electromagnetic Theory and Applications for PhC (USA:CRC) p. 46
[44] Linton C M and Evans D V 1990 J. Fluid Mech. 215 549
[45] Burin A L, Blaustein G S and Samoylova O M 2006 Phys. Rev. E 73 066614
[46] Oraevsky A N 2002 Quantum Electr. 32 377
[47] Ni L F, Wang Z X, Peng C and Li Z B 2016 Phys. Rev. B 94 245148
[48] Yuan L J and Lu Y Y 2020 Phys. Rev. A 101 043827
[1] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[2] Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring
Wu Li-Jun (吴丽君), Han Yu (韩宇). Chin. Phys. B, 2013, 22(4): 047302.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Qianghua Rao(饶强华), Hui Chen(陈辉), Sanqiu Liu(刘三秋), and Xiaochang Chen(陈小昌). Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization[J]. Chin. Phys. B, 2024, 33(8): 85201 -085201 .