Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074208    DOI: 10.1088/1674-1056/ad47b1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser

Zhetao Zhao(赵哲韬)1, Qinke Shu(舒沁珂)1, Ziyi Xie(解梓怡)1, Yuxuan Ren(任俞宣)1, Ying Zhang(张颖)1, Bo Yuan(袁博)1, Chunbo Zhao(赵春勃)2,†, Junsong Peng(彭俊松)1,3,4,‡, and Heping Zeng(曾和平)1,4,5
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 China Academy of Space Technology, Xi'an 710100, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
4 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China;
5 Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China
Abstract  Dissipative soliton resonance (DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
Keywords:  mode locking      laser      fiber      pulse  
Received:  22 March 2024      Revised:  22 April 2024      Accepted manuscript online:  06 May 2024
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0301000) and the National Natural Science Foundation of China (Grant Nos. 11621404, 11561121003, 11727812, 61775059, 12074122, 62022033, and 11704123). Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKT2022KL504008), the Shanghai Natural Science Foundation (Grant No. 23ZR1419000), and the National Key Laboratory Foundation of China (Grant No. 6142411196307).
Corresponding Authors:  Chunbo Zhao, Junsong Peng     E-mail:  zhaocb38@163.com;jspeng@lps.ecnu.edu.cn

Cite this article: 

Zhetao Zhao(赵哲韬), Qinke Shu(舒沁珂), Ziyi Xie(解梓怡), Yuxuan Ren(任俞宣), Ying Zhang(张颖), Bo Yuan(袁博), Chunbo Zhao(赵春勃), Junsong Peng(彭俊松), and Heping Zeng(曾和平) Dissipative soliton resonance within different dispersion regimes in a single mode-locked laser 2024 Chin. Phys. B 33 074208

[1] Chang W, Ankiewicz A, Soto-Crespo J and Akhmediev N 2008 Phys. Rev. A 78 023830
[2] Hendow S T and Shakir S A 2010 Opt. Express 18 10188
[3] Kalosha V, Ponomarev E, Chen L and Bao X 2006 Opt. Express 14 2071
[4] Tan J, Zhong Z, Liu Y and Zeng D 2015 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM) 2015 7368632
[5] Evans R, Camacho-Lóez S, Pérez-Gutiérrez F and Aguilar G 2008 Opt. Express 16 7481
[6] Matsas V J, Newson T P and Zervas M N 1992 Opt. Commun. 92 61
[7] Chang W, Ankiewicz A, Soto-Crespo J M and Akhmediev N 2008 J. Opt. Soc. Am. B 25 1972
[8] Chang W, Soto-Crespo J M, Ankiewicz A and Akhmediev N 2009 Phys. Rev. A 79 033840
[9] Grelu P and Akhmediev N 2012 Nat. Photonics 6 84
[10] Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z and Gao C 2012 J. Lightwave Technol. 30 2502
[11] Huang X, Li X, Chen E, Pan Z, Guo P, Sun L, Wang Y and Zhao W 2024 IEEE J. Sel. Top. Quantum Electron. 2023 3319342
[12] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905
[13] Liu X and Pang M 2019 Laser Photonics Rev. 13 1800333
[14] Liu X, Popa D and Akhmediev N 2019 Phys. Rev. Lett. 123 093901
[15] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Prog. Quantum Electron. 71 100264
[16] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304
[17] Li Y Y, Gao B, Ma C Y, Wu G, Huo J Y, Han Y, Wageh S, Al-Hartomy O A, Al-Sehemi A G and Liu L 2023 Laser Photonics Rev. 17 2200596
[18] Wu X, Tang D Y, Zhang H and Zhao L M 2009 Opt. Express 17 5580
[19] Li J, Wang C and Wang P 2024 Opt. Fiber Technol. 82 103637
[20] Lyu Y, Shi H, Wei C, Li H, Li J and Liu Y 2017 Photonics Res. 5 612
[21] Li X, Liu X, Hu X, Wang L, Lu H, Wang Y and Zhao W 2010 Opt. Lett. 35 3249
[22] Mei L, Chen G, Xu L, Zhang X, Gu C, Sun B and Wang A 2014 Opt. Lett. 39 3235
[23] Chowdhury S D, Pal A, Chatterjee S, Sen R and Pal M 2018 J. Lightwave Technol. 36 5773
[24] Armas-Rivera I, Cuadrado-Laborde C, Carrascosa A, Kuzin E, Beltrán-Pérez G, Díez A and Andrés M V 2016 Opt. Express 24 9966
[25] Tang Y, Li F and Yu X 2022 Optics Laser Technol. 152 108147
[26] Chernysheva M, Krylov A, Ogleznev A, Arutyunyan N, Pozharov A, Obraztsova E and Dianov E 2012 Opt. Express 20 23994
[27] Ortaç B, Plötner M, Schreiber T, Limpert J and Tünnermann A 2007 Opt. Express 15 15595
[28] Nishizawa N, Jin L, Kataura H and Sakakibara Y 2015 Photonics 2 808
[29] Pulikkaseril C, Stewart L A, Roelens M A F, Baxter G W, Poole S and Frisken S 2011 Opt. Express 19 8458
[30] Peng J and Boscolo S 2016 Sci. Rep. 6 25995
[31] Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z, Sun Z and Zhao J 2021 Nat. Commun. 12 6712
[32] Lourdesamy J P, Runge A F, Alexander T J, Hudson D D, BlancoRedondo A and de Sterke C M 2022 Nat. Phys. 18 59
[33] Runge A F, Hudson D D, Tam K K, de Sterke C M and BlancoRedondo A 2020 Nat. Photonics 14 492
[34] Nakazawa M, Yoshida M and Hirooka T 2014 Optica 1 15
[35] Xu K, Sung J Y, Wong C Y, Cheng Z, Chow C W and Tsang H K 2014 Opt. Commun. 329 23
[36] Boscolo S, Finot C and Turitsyn S K 2015 IEEE Photonics J. 7 7802008
[37] Yue L, Liu Y, Cai W, Cao D, Li Y and Wu J 2023 Opt. Commun. 533 129308
[38] Ren Y, Ge J, Li X, Peng J and Zeng H 2024 Chin. Phys. B 33 034210
[39] Haus H A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1173
[40] Agrawal G P 1990 IEEE Photonics Technol. Lett. 2 875
[41] Peng J and Zeng H 2018 Laser Photonics Rev. 12 1800009
[42] Peng J and Zeng H 2019 Phys. Rev. Appl. 11 044068
[43] Peng J, Sorokina M, Sugavanam S, Tarasov N, Churkin D V, Turitsyn S K and Zeng H 2018 Commun. Phys. 1 20
[44] Boscolo S, Finot C, Karakuzu H and Petropoulos P 2014 Opt. Lett. 39 438
[45] Cheng Z, Li H and Wang P 2015 Opt. Express 23 5972
[46] Agrawal G P 2019 Nonlinear Fiber Optics 50 309
[1] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[2] Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏). Chin. Phys. B, 2024, 33(8): 087901.
[3] Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操). Chin. Phys. B, 2024, 33(8): 083102.
[4] Internal phase control of fiber laser array based on photodetector array
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴). Chin. Phys. B, 2024, 33(7): 074201.
[5] Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation
Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(7): 074209.
[6] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[7] Manipulating the electron dynamics in the non-sequential double ionization process of Ar atoms by an orthogonal two-color laser field
Pengzhao Wang(王鹏昭), Lijie Qian(钱丽洁), Zhenrong Sun(孙真荣), and Yan Yang(杨岩). Chin. Phys. B, 2024, 33(6): 063201.
[8] Velocity analysis of supersonic jet flow in double-cone ignition scheme
Zhong-Yuan Zhu(朱仲源), Cheng-Long Zhang(张成龙), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(6): 065203.
[9] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[10] Corrigendum to "Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields"
Xiaoyong Lu(卢肖勇), Lide Wang(王立德), and Yunfei Li(李云飞). Chin. Phys. B, 2024, 33(6): 069901.
[11] Imaging plate scanners calibration and the attenuation behavior of imaging plate signals
Nan Bo(薄楠) and Nai-Yan Wang(王乃彦). Chin. Phys. B, 2024, 33(6): 060701.
[12] Electromagnetic pulses produced by a picosecond laser interacting with solid targets
Ai-Hui Niu(牛爱慧), Ning Kang(康宁), Guo-Xiao Xu(许国潇), Jia-Jie Xie(谢佳节), Jian Teng(滕建), Hui-Ya Liu(刘会亚), Ming-Ying Sun(孙明营), and Ting-Shuai Li(李廷帅). Chin. Phys. B, 2024, 33(5): 054205.
[13] A global model of intensity autocorrelation to determine laser pulse duration
Yufei Peng(彭雨菲), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). Chin. Phys. B, 2024, 33(5): 054207.
[14] Elliptically polarized high-order harmonic generation of Ar atom in an intense laser field
Jie Hu(胡杰), Yi-Chen Wang(王一琛), Qiu-Shuang Jing(景秋霜), Wei Jiang(姜威), Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Bo Xiao(肖礴), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2024, 33(5): 054208.
[15] Model of self-generated magnetic field generation from relativistic laser interaction with solid targets
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕). Chin. Phys. B, 2024, 33(5): 055203.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[4] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[5] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[6] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[7] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[8] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[9] JIN YING (金鹰), ZHANG SHU-LIN (张树霖), QIN GUO-GANG (秦国刚), FAN YONG-LIANG (樊永良), ZHOU GOU-LIANG (周国良), YU MING-REN (俞鸣人). RAMAN SCATTERING INTENSITIES OF FOLDED LONGITUDINAL ACOUSTIC PHONONS IN GexSi1-x/Si SUPERLATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 130 -137 .
[10] WANG DA-CHUN (王大椿), DING XUN-LIANG (丁训良), YANG HUA (杨华), LUO PING-AN (罗平安). MASS ATTENUATION COEFFICIENTS FOR ELEMENTS MEASURED WITH CHARACTERISTIC X-RAYS FROM TARGETS EXCITED BY ENERGETIC PROTON[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 138 -148 .