Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076101    DOI: 10.1088/1674-1056/ad3dd4
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy

Jin-Hua Xiao(肖晋桦)1, Da-Wei Ding(丁大伟)2,†, Lin Li(李琳)1, Yi-Tao Sun(孙奕韬)2, Mao-Zhi Li(李茂枝)3, and Wei-Hua Wang(汪卫华)2
1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe$_{86-x}$Y$_{x}$B$_{7}$C$_{7}$ ($x=0$, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property, and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.
Keywords:  Fe-based amorphous alloy      ab initio molecular dynamic simulation      glass-forming ability      magnetic properties  
Received:  26 February 2024      Revised:  03 April 2024      Accepted manuscript online:  12 April 2024
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  81.05.Kf (Glasses (including metallic glasses))  
  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2401703), the National Natural Science Foundation of China (Grant Nos. 52177005 and 51871234), and the China Postdoctoral Science Foundation (Grant No. 2022T150691).
Corresponding Authors:  Da-Wei Ding     E-mail:  dingdawei@iphy.ac.cn

Cite this article: 

Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华) Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy 2024 Chin. Phys. B 33 076101

[1] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45
[2] Takeuchi A and Inoue A 2005 Mater. Trans. JIM 46 2817
[3] Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131
[4] Wang W H 2013 Prog. Phys. 33 177 (in Chinese)
[5] Ri M C, Ding D W, Sohrabi S, Sun B A and Wang W H 2018 J. Appl. Phys. 124 165108
[6] Ri M C, Ding D W, Sun B A, Wang J Q, Zhu X S, Wang B B, Wang T L, Qiu Q Q, Huo L S and Wang W H 2018 J. Non. Cryst. Solids 495 54
[7] Shi L and Yao K 2020 Mater. Des. 189 108511
[8] Ye S, Li X, Bian X, Wang W M, Yin L and An B 2013 J. Alloys Compd. 562 143
[9] Hatta S, Egami T and Graham C D 1979 Appl. Phys. Lett. 34 113
[10] Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F and Obaid A 2017 J. Alloys Compd. 711 132
[11] Wang F, Inoue A, Han Y, Zhu S L, Kong F L, Zanaeva E, Liu G D, Shalaan E, Al-Marzouki F and Obaid A 2017 J. Alloys Compd. 723 376
[12] Hirata A, Hirotsu Y, Ohkubo T, Hanada T and Bengus V Z 2006 Phys. Rev. B 74 214206
[13] Sheng H, Luo W, Alamgir F, Bai J and Ma E 2006 Nature 439 419
[14] Poulopoulos P, Baskoutas S, Kiss L F, Bujdos′o L, Kemény T, Wilhelm F, Rogalev A, Kapaklis V, Politis C, Angelakeris M and Saksl K 2008 J. Non-Cryst. Solids 354 587
[15] Tian H, Zhang C, Wang L, Zhao J, Dong C, Wen B and Wang Q 2011 J. Appl. Phys. 109 123520
[16] Ding J, Ma E, Asta M and Ritchie R O 2015 Sci. Rep. 5 17429
[17] Yu Q, Wang X D, Lou H B, Cao Q P and Jiang J Z 2016 Acta Mater. 102 116
[18] Ma H J, Wang W M, Pan S P, Cao C D and Zhang H D 2012 Sci. Sin. Phys. Mech. Astr. 42 583 (in Chinese)
[19] Zhang W, Li Q and Duan H 2015 J. Appl. Phys. 117 104901
[20] Ma S, Ran Y, Liang X, Jiang L, Li Y, Wang X, Yao M and Zhang W 2022 J. Alloys Compd. 902 163637
[21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[22] Blochl P E 1994 Phys. Rev. B 50 17953
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[25] Li M X, Sun Y T, Wang C, Hu L W, Sohn S, Schroers J, Wang W H and Liu Y H 2022 Nat. Mater. 21 165
[26] Suryanarayana C and Inoue A 2013 Int. Mater. Rev. 58 131
[27] Inoue A 1995 Mater. Trans. JIM 36 866
[28] Wu D, Li Q and Duan H 2017 J. Non. Cryst. Solids 461 87
[29] Jiang J, Li Q, Duan H and Li H 2017 Comput. Mater. Sci. 130 76
[30] Zhu L, Wang Y G, Cao C C and Meng Y 2017 Chin. Phys. B 26 067101
[31] Wang Y, Zhang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2015 Mater. Res. Express 2 016506
[32] Jiang Y, Jia S, Chen S, Li X, Wang L and Han X 2022 Materials 15 3149
[33] Han J J, Wang W Y, Liu X J, Wang C P, Hui X D and Liu Z K 2014 Acta Mater. 77 96
[34] Moroni E G, Kresse G, Hafner J and Furthmüller J 1997 Phys. Rev. B 56 15629
[35] Ganesh P and Widom M 2008 Phys. Rev. B 77 014205
[36] Qin J, Gu T and Yang L 2009 J. Non-Cryst. Solids 355 2333
[37] Qin J, Gu T, Yang L and Bian X 2007 Appl. Phys. Lett. 90 201909
[38] Finney J L 1977 Nature 266 309
[39] Li M, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[40] Dong B S, Zhou S X, Qin J Y, Pan S P and Li Z B 2013 Prog. Nat. Sci. Mater. Int. 23 216
[41] Guan P F, Fujita T, Hirata A, Liu Y H and Chen M W 2012 Phys. Rev. Lett. 108 175501
[42] Ma H J, Shen K C, Pan S P, Zhao J, Qin J Y, Kim K B and Wang W M 2015 J. Non-Cryst. Solids 425 67
[43] Wang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2015 J. Appl. Phys. 117 17B705
[44] Lu L J, Guo Y M, Li X and Zhang T 2022 J. Alloys Compd. 904 164101
[45] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950
[46] Li X, Zuo L, Zhang X and Zhang T 2018 J. Phys. Chem. C 122 28613
[47] Ma S, Hao W Y, Wang X D, Zhang W and Yao M 2022 Acta Phys. Sin. 71 228102 (in Chinese)
[48] Sun C, Xu H, Meng Y, Wang X, Han M, Qiao B, Wang Y and Zhang T 2022 Materials 15 8416
[49] Wang H, Hu T and Zhang T 2013 Physica B 411 161
[50] Tian H, Zhang C, Zhao J, Dong C, Wen B and Wang Q 2012 Physica B 407 250
[1] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[2] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[3] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[4] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[5] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[8] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[11] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[12] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[13] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
No Suggested Reading articles found!