CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy |
Jin-Hua Xiao(肖晋桦)1, Da-Wei Ding(丁大伟)2,†, Lin Li(李琳)1, Yi-Tao Sun(孙奕韬)2, Mao-Zhi Li(李茂枝)3, and Wei-Hua Wang(汪卫华)2 |
1 State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China |
|
|
Abstract The atomic structure of amorphous alloys plays a crucial role in determining both their glass-forming ability and magnetic properties. In this study, we investigate the influence of adding the Y element on the glass-forming ability and magnetic properties of Fe$_{86-x}$Y$_{x}$B$_{7}$C$_{7}$ ($x=0$, 5, 10 at.%) amorphous alloys via both experiments and ab initio molecular dynamics simulations. Furthermore, we explore the correlation between local atomic structures and properties. Our results demonstrate that an increased Y content in the alloys leads to a higher proportion of icosahedral clusters, which can potentially enhance both glass-forming ability and thermal stability. These findings have been experimentally validated. The analysis of the electron energy density and magnetic moment of the alloy reveals that the addition of Y leads to hybridization between Y-4d and Fe-3d orbitals, resulting in a reduction in ferromagnetic coupling between Fe atoms. This subsequently reduces the magnetic moment of Fe atoms as well as the total magnetic moment of the system, which is consistent with experimental results. The results could help understand the relationship between atomic structure and magnetic property, and providing valuable insights for enhancing the performance of metallic glasses in industrial applications.
|
Received: 26 February 2024
Revised: 03 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
|
75.50.Kj
|
(Amorphous and quasicrystalline magnetic materials)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB2401703), the National Natural Science Foundation of China (Grant Nos. 52177005 and 51871234), and the China Postdoctoral Science Foundation (Grant No. 2022T150691). |
Corresponding Authors:
Da-Wei Ding
E-mail: dingdawei@iphy.ac.cn
|
Cite this article:
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华) Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy 2024 Chin. Phys. B 33 076101
|
[1] Wang W H, Dong C and Shek C H 2004 Mater. Sci. Eng. R 44 45 [2] Takeuchi A and Inoue A 2005 Mater. Trans. JIM 46 2817 [3] Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131 [4] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [5] Ri M C, Ding D W, Sohrabi S, Sun B A and Wang W H 2018 J. Appl. Phys. 124 165108 [6] Ri M C, Ding D W, Sun B A, Wang J Q, Zhu X S, Wang B B, Wang T L, Qiu Q Q, Huo L S and Wang W H 2018 J. Non. Cryst. Solids 495 54 [7] Shi L and Yao K 2020 Mater. Des. 189 108511 [8] Ye S, Li X, Bian X, Wang W M, Yin L and An B 2013 J. Alloys Compd. 562 143 [9] Hatta S, Egami T and Graham C D 1979 Appl. Phys. Lett. 34 113 [10] Wang F, Inoue A, Han Y, Kong F L, Zhu S L, Shalaan E, Al-Marzouki F and Obaid A 2017 J. Alloys Compd. 711 132 [11] Wang F, Inoue A, Han Y, Zhu S L, Kong F L, Zanaeva E, Liu G D, Shalaan E, Al-Marzouki F and Obaid A 2017 J. Alloys Compd. 723 376 [12] Hirata A, Hirotsu Y, Ohkubo T, Hanada T and Bengus V Z 2006 Phys. Rev. B 74 214206 [13] Sheng H, Luo W, Alamgir F, Bai J and Ma E 2006 Nature 439 419 [14] Poulopoulos P, Baskoutas S, Kiss L F, Bujdosó L, Kemény T, Wilhelm F, Rogalev A, Kapaklis V, Politis C, Angelakeris M and Saksl K 2008 J. Non-Cryst. Solids 354 587 [15] Tian H, Zhang C, Wang L, Zhao J, Dong C, Wen B and Wang Q 2011 J. Appl. Phys. 109 123520 [16] Ding J, Ma E, Asta M and Ritchie R O 2015 Sci. Rep. 5 17429 [17] Yu Q, Wang X D, Lou H B, Cao Q P and Jiang J Z 2016 Acta Mater. 102 116 [18] Ma H J, Wang W M, Pan S P, Cao C D and Zhang H D 2012 Sci. Sin. Phys. Mech. Astr. 42 583 (in Chinese) [19] Zhang W, Li Q and Duan H 2015 J. Appl. Phys. 117 104901 [20] Ma S, Ran Y, Liang X, Jiang L, Li Y, Wang X, Yao M and Zhang W 2022 J. Alloys Compd. 902 163637 [21] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [22] Blochl P E 1994 Phys. Rev. B 50 17953 [23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [24] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298 [25] Li M X, Sun Y T, Wang C, Hu L W, Sohn S, Schroers J, Wang W H and Liu Y H 2022 Nat. Mater. 21 165 [26] Suryanarayana C and Inoue A 2013 Int. Mater. Rev. 58 131 [27] Inoue A 1995 Mater. Trans. JIM 36 866 [28] Wu D, Li Q and Duan H 2017 J. Non. Cryst. Solids 461 87 [29] Jiang J, Li Q, Duan H and Li H 2017 Comput. Mater. Sci. 130 76 [30] Zhu L, Wang Y G, Cao C C and Meng Y 2017 Chin. Phys. B 26 067101 [31] Wang Y, Zhang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2015 Mater. Res. Express 2 016506 [32] Jiang Y, Jia S, Chen S, Li X, Wang L and Han X 2022 Materials 15 3149 [33] Han J J, Wang W Y, Liu X J, Wang C P, Hui X D and Liu Z K 2014 Acta Mater. 77 96 [34] Moroni E G, Kresse G, Hafner J and Furthmüller J 1997 Phys. Rev. B 56 15629 [35] Ganesh P and Widom M 2008 Phys. Rev. B 77 014205 [36] Qin J, Gu T and Yang L 2009 J. Non-Cryst. Solids 355 2333 [37] Qin J, Gu T, Yang L and Bian X 2007 Appl. Phys. Lett. 90 201909 [38] Finney J L 1977 Nature 266 309 [39] Li M, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201 [40] Dong B S, Zhou S X, Qin J Y, Pan S P and Li Z B 2013 Prog. Nat. Sci. Mater. Int. 23 216 [41] Guan P F, Fujita T, Hirata A, Liu Y H and Chen M W 2012 Phys. Rev. Lett. 108 175501 [42] Ma H J, Shen K C, Pan S P, Zhao J, Qin J Y, Kim K B and Wang W M 2015 J. Non-Cryst. Solids 425 67 [43] Wang Y, Takeuchi A, Makino A, Liang Y and Kawazoe Y 2015 J. Appl. Phys. 117 17B705 [44] Lu L J, Guo Y M, Li X and Zhang T 2022 J. Alloys Compd. 904 164101 [45] Honeycutt J D and Andersen H C 1987 J. Phys. Chem. 91 4950 [46] Li X, Zuo L, Zhang X and Zhang T 2018 J. Phys. Chem. C 122 28613 [47] Ma S, Hao W Y, Wang X D, Zhang W and Yao M 2022 Acta Phys. Sin. 71 228102 (in Chinese) [48] Sun C, Xu H, Meng Y, Wang X, Han M, Qiao B, Wang Y and Zhang T 2022 Materials 15 8416 [49] Wang H, Hu T and Zhang T 2013 Physica B 411 161 [50] Tian H, Zhang C, Zhao J, Dong C, Wen B and Wang Q 2012 Physica B 407 250 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|