Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076103    DOI: 10.1088/1674-1056/ad362b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential

Xi Wang(王玺)1, Meng Tang(唐孟)1, Ming-Xuan Jiang(蒋明璇)1, Yang-Chun Chen(陈阳春)2, Zhi-Xiao Liu(刘智骁)2,†, and Hui-Qiu Deng(邓辉球)1,‡
1 School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
Abstract  Zirconium hydride (ZrH$_{2}$) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH$_{2}$. Molecular dynamics (MD) and ab initio molecular dynamics (AIMD) are two main methods of calculating the threshold energy of displacement$.$ The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform large-scale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH$_{2}$ system by using the deep-potential (DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH$_{2}$ system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler-Biersack-Littmark (ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in $\varepsilon $-ZrH$_{2}$.
Keywords:  zirconium hydride      deep learning potential      radiation defects      molecular dynamics      threshold energy of displacement  
Received:  03 February 2024      Revised:  15 March 2024      Accepted manuscript online:  21 March 2024
PACS:  61.66.Dk (Alloys )  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  34.20.Cf (Interatomic potentials and forces)  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China–“Ye Qisun” Science Fund (Grant No. U2341251).
Corresponding Authors:  Zhi-Xiao Liu, Hui-Qiu Deng     E-mail:  zxliu@hnu.edu.cn;hqdeng@hnu.edu.cn

Cite this article: 

Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球) Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential 2024 Chin. Phys. B 33 076103

[1] Bickel P W and Berlincourt T G 1970 Phys. Rev. B 2 4807
[2] Simnad M 1981 Nucl. Eng. Des. 64 403
[3] Haslett R 1995 Space nuclear thermal propulsion program, Grumman Aerospace Corp TR PL-TR-95-1064, Bethpage, NY
[4] Narang P P, Paul G L and Taylor K N R 1977 Journal of The LessCommon Metals 56 125
[5] Khoda-Bakhsh R and Ross D K 1982 J. Phys. F: Metal Phys. 12 15
[6] Lanzani L and Ruch M 2004 J. Nucl. Mater. 324 165
[7] Zhao Z, Morniroli J P, Legris A, Ambard A, Khin Y, Legras L and Blat-Yrieix M 2008 Journal of Microscopy 232 410
[8] Wang Z, Garbe U, Li H, Harrison R P, Toppler K, Studer A J, Palmer T and Planchenault G 2013 J. Nucl. Mater. 436 84
[9] Domain C, Besson R and Legris A 2002 Acta Materialia 50 3513
[10] Zhu W, Wang R, Shu G, Wu P and Xiao H 2010 J. Phys. Chem. C 114 22361
[11] Wang F and Gong H R 2012 International Journal of Hydrogen Energy 37 12393
[12] Wang H, Chroneos A, Jiang C, et al. 2013 Phys. Chem. Chem. Phys. 15 7599
[13] Lumley S C, Grimes R W, Murphy S T, Burr P A, Chroneos A, ChardTuckey P R and Wenman M R 2014 Acta Mater. 79 351
[14] Olsson P A T, Massih A R, Blomqvist J, Alvarez Holston A M and Bjerkén C 2014 Comput. Mater. Sci. 86 211
[15] Zhang P, Wang B T, He C H and Zhang P 2011 Comput. Mater. Sci. 50 3297
[16] Mendelev M I and Ackland G J 2007 Philosophical Magazine Letters 87 349
[17] Siripurapu R K, Szpunar B and Szpunar J A 2014 Int. J. Nucl. Energy 2014 912369
[18] Noordhoek M J, Liang T, Chiang T W, Sinnott S B and Phillpot S R 2014 J. Nucl. Mater. 452 285
[19] Lee B M and Lee B J 2014 Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 45 2906
[20] Thompson A P, Swiler L P, Trott C R, et al. 2015 J. Comput. Phys. 285 316
[21] Shapeev A V 2016 Multiscale Modeling and Simulation 14 1153
[22] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[23] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[24] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K R 2017 Sci. Adv. 3 e1603015
[25] Schütt K T, Kindermans P J, Sauceda H E, Chmiela S, Tkatchenko A and Müller K R 2017 Advances in Neural Information Processing Systems 30 991
[26] Smith J S, Isayev O and Roitberg A E 2017 Chem. Sci. 8 3192
[27] Han J, Zhang L, Car R and Weinan E 2018 Commun. Comput. Phys. 23 629
[28] Zhang L, Han J, Wang H, Car R and Weinan E 2018 Phys. Rev. Lett. 120 143001
[29] Zhang L, Han J, Wang H, Saidi W A and Weinan E 2018 Advances in Neural Information Processing Systems 31 4436
[30] Wood M A and Thompson A P arXiv:1702.07042
[physics. comp-ph]
[31] Zhang L, Lin D Y, Wang H, Car R and Weinan E 2019 Phys. Rev. Mater. 3 023804
[32] Jiang W, Zhang Y, Zhang L and Wang H 2021 Chin. Phys. B 30 050706
[33] Wang Y, Zhang L, Xu B, Wang X Y and Wang H 2022 Modelling and Simulation in Materials Science and Engineering 30 025003
[34] Wen T, Wang R, Zhu L, Zhang L, Wang H, Srolovitz D J and Wu Z 2021 Npj Comput. Mater. 7 206
[35] Wang R, Ma X, Zhang L, Wang H, Srolovitz D J, Wen T and Wu Z 2022 Phys. Rev. Mater. 6 113603
[36] Wang X, Wang Y, Zhang L, Dai F and Wang H 2022 Nuclear Fusion 62 126013
[37] Pitike K C and Setyawan W 2023 J. Nucl. Mater. 574 154183
[38] Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H and Weinan E 2020 Comput. Phys. Commun. 253 107206
[39] Zheng J, Zhou X, Mao L, Zhang H, Liang J, Sheng J and Peng S 2015 International Journal of Hydrogen Energy 40 4597
[40] Zhu X, Lin D Y, Fang Y J, Gao X Y, Zhao Y F and Song H F 2018 Comput. Mater. Sci. 150 77
[41] Chattaraj D, Parida S C, Dash S and Majumder C 2014 International Journal of Hydrogen Energy 39 9681
[42] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[43] Plimpton S 1995 J. Comput. Phys. 117 1
[44] Wang H, Zhang L, Han J and Weinan E 2018 Comput. Phys. Commun. 228 178
[45] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[46] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[50] Zhou M, Fu B, Hou Q, Wu L and Pan R 2022 J. Nucl. Mater. 566 153772
[51] Liyanage M, Reith D, Eyert V and Curtin W A 2022 Phys. Rev. Mater. 6 063804
[52] Zhang S, Zhang X, Zhu Y, Zhang S, Qi L and Liu R 2012 Comput. Mater. Sci. 61 42
[53] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K and Saito T 2004 Phys. Rev. B 70 174113
[54] Wang B T, Zhang P, Liu H Y, Li W D and Zhang P 2011 J. Appl. Phys. 109 063514
[55] Hao Y J, Zhang L, Chen X R, Li Y H and He H L 2008 J. Phys.: Conden. Matter 20 235230
[56] Zheng J, Zhang H, Zhou X, Liang J, Sheng L and Peng S 2014 Adv. Condens. Matter Phys. 2014 929750
[57] Pearson W B and Vineyard G H 1958 Physics Today 11 36
[58] Nitol M S, Dickel D E and Barrett C D 2022 Acta Materialia 224 117347
[59] Fisher E S and Renken C J 1964 Phys. Rev. 135 A482
[60] Boer F R 1988 Cohesion in metals: transition metal alloys, Vol. 1 (North Holland)
[61] Tyson W R and Miller W A 1977 Surf. Sci. 62 267
[62] Niedźwiedź K and Nowak B 1993 J. Alloys Compd. 194 47
[63] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[64] Hou H, Pan Y, Bai G, Li Y, Murugadoss V and Zhao Y 2022 Advanced Composites and Hybrid Materials 5 1350
[65] Vetrano J B 1971 Nuclear Engineering and Design 14 390
[66] Wang H, Guo X, Zhang L, Wang H and Xue J 2019 Appl. Phys. Lett. 114 244101
[67] Nordlund K and Averback R 1997 Phys. Rev. B 56 2421
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[4] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[5] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[6] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[7] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[8] Cholesterol-induced deformation of the gramicidin A channel inhibiting potassium ion binding and transport
Pan Xiao(肖盼), Yu Cao(曹宇), Jin Zhu(朱瑾), and Qing Liang(梁清). Chin. Phys. B, 2024, 33(5): 058701.
[9] Controlled thermally-driven mass transport in carbon nanotubes using carbon hoops
Yaolong Li(李耀隆), Songyuan Li(李松远), Meifen Wang(王美芬), and Renliang Zhang(张任良). Chin. Phys. B, 2024, 33(4): 046101.
[10] Phase-field simulations of the effect of temperature and interface for zirconium δ-hydrides
Zi-Hang Chen(陈子航), Jie Sheng(盛杰), Yu Liu(刘瑜), Xiao-Ming Shi(施小明), Houbing Huang(黄厚兵), Ke Xu(许可), Yue-Chao Wang(王越超), Shuai Wu(武帅), Bo Sun(孙博), Hai-Feng Liu(刘海风), and Hai-Feng Song(宋海峰). Chin. Phys. B, 2024, 33(4): 048201.
[11] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[12] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[13] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[14] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[15] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
No Suggested Reading articles found!