Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 066401    DOI: 10.1088/1674-1056/ad362c
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pressure-induced magnetic phase and structural transition in SmSb2

Tao Li(李涛)1,2, Shuyang Wang(王舒阳)2,†, Xuliang Chen(陈绪亮)1,2, Chunhua Chen(陈春华)2, Yong Fang(房勇)3, and Zhaorong Yang(杨昭荣)1,2,4,5,‡
1 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
2 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
3 Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500, China;
4 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  Motivated by the recent discovery of unconventional superconductivity around a magnetic quantum critical point in pressurized CeSb$_{2}$, here we present a high-pressure study of an isostructural antiferromagnetic (AFM) SmSb$_{2}$ through electrical transport and synchrotron x-ray diffraction measurements. At $P_{\rm C} \sim 2.5 $GPa, we found a pressure-induced magnetic phase transition accompanied by a Cmca, $\to P$4nmm structural phase transition. In the pristine AFM phase below $P_{\rm C}$, the AFM transition temperature of SmSb$_{2}$ is insensitive to pressure; in the emergent magnetic phase above $P_{\rm C}$, however, the magnetic critical temperature increases rapidly with increasing pressure. In addition, at ambient pressure, the magnetoresistivity (MR) of SmSb$_{2}$ increases suddenly upon cooling below the AFM transition temperature and presents linear nonsaturating behavior under high field at 2K. With increasing pressure above $P_{\rm C}$, the MR behavior remains similar to that observed at ambient pressure, both in terms of temperature- and field-dependent MR. This leads us to argue an AFM-like state for SmSb$_{2}$ above $P_{\rm C}$. Within the investigated pressure of up to 45.3GPa and the temperature of down to 1.8K, we found no signature of superconductivity in SmSb$_{2}$.
Keywords:  high pressure      antiferromagnet      magnetoresistivity      structural transition  
Received:  06 February 2024      Revised:  19 March 2024      Accepted manuscript online:  21 March 2024
PACS:  64.70.K (Solid-solid transitions)  
  47.80.Fg (Pressure and temperature measurements)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  81.40.Vw (Pressure treatment)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406102 and 2022YFA1602603), the National Natural Science Foundation of China (Grant Nos. 12374049 and 12174395), the China Postdoctoral Science Foundation (Grant No. 2023M743542), Hefei Institutes of Physical Science, Chinese Academy of Sciences the Director’s Fundation of (Grant No. YZJJ2024QN41), and the Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08).
Corresponding Authors:  Shuyang Wang, Zhaorong Yang     E-mail:  sywang@hmfl.ac.cn;zryang@issp.ac.cn

Cite this article: 

Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣) Pressure-induced magnetic phase and structural transition in SmSb2 2024 Chin. Phys. B 33 066401

[1] Steglich F and Wirth S 2016 Rep. Prog. Phys. 79 084502
[2] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[3] Morosan E, Natelson D, Nevidomskyy A H and Si Q M 2012 Adv. Mater. 24 4896
[4] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186
[5] Stewart S G 1984 Rev. Mod. Phys. 56 755
[6] Niu R and Zhu W 2021 J. Phys.: Condens. Matter 34 113001
[7] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K and Lian B 2020 Nature 583 533
[8] Tafti F, Gibson Q, Kushwaha S, Haldolaarachchige N and Cava R 2016 Nat. Phys. 12 272
[9] Dzero M, Xia J, Galitski V and Coleman P 2016 Annu. Rev. Condens. Matter Phys. 7 249
[10] Weng H, Yu R, Hu X, Dai X and Fang Z 2015 Adv. Phys. 64 227
[11] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[12] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486
[13] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242
[14] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[15] Luccas R F, Fente A, Hanko J, Correa-Orellana A, Herrera E, ClimentPascual E, Azpeitia J, Perez-Castañeda T, Osorio M and Salas-Colera E 2015 Phys. Rev. B 92 235153
[16] Kagawa A, Kagayama T, Oomi G, Mitamura H, Goto T, Canfield P and Bud’ko S 2000 Physica B: Condens. Matter 281 124
[17] Kawaguchi K, Kagayama T, Oomi G, Canfield P and Bud’Ko S 1997 Physica B 237 587
[18] Palacio I, Obando-Guevara J, Chen L, Nair M, Barrio M G, Papalazarou E, Le Fèvre P, Taleb-Ibrahimi A, Michel E and Mascaraque A 2023 Appl. Surf. Sci. 610 155477
[19] Bud’ko S L, Canfield P, Mielke C and Lacerda A 1998 Phys. Rev. B 57 13624
[20] Fischer K F, Roth N and Iversen B B 2019 J. Appl. Phys. 125 045110
[21] Galvis J, Suderow H, Vieira S, Bud’ko S and Canfield P 2013 Phys. Rev. B 87 214504
[22] Guo S, Young D, Adams P, Wu X, Chan J Y, McCandless G and DiTusa J 2011 Phys. Rev. B 83 174520
[23] Singha R, Yuan F, Lee S B, Villalpando G V, Cheng G, Singh B, Sarker S, Yao N, Burch K S and Schoop L M 2023 Adv. Funct. Mater 23 2308733
[24] Trainer C, Abel C, Bud’ko S L, Canfield P C and Wahl P 2021 Phys. Rev. B 104 205134
[25] Liu B, Wang L, Radelytskyi I, Zhang Y, Meven M, Deng H, Zhu F, Su Y, Zhu X and Tan S 2020 J. Phys.: Condens. Matter 32 405605
[26] Zhang Y, Zhu X, Hu B, Tan S, Xie D, Feng W, Qin L, Zhang W, Liu Y, Song H, Luo L, Zhang Z and Lai X 2017 Chin. Phys. B 26 067102
[27] Ruszała P, Winiarski M and Samsel-Czekała M 2020 Acta Phys. Pol. A 138 748
[28] Young D, Goodrich R, DiTusa J, Guo S, Adams P, Chan J Y and Hall D 2003 Appl. Phys. Lett. 82 3713
[29] Goodrich R, Browne D, Kurtz R, Young D, DiTusa J, Adams P and Hall D 2004 Phys. Rev. B 69 125114
[30] Qiao Y, Tao Z, Wang F, Wang H, Jiang Z, Liu Z, Cho S, Zhang F, Meng Q and Xia W 2022 arXiv:2208.10437
[cond-mat.str-el]
[31] Bud’ko S L, Huyan S, Herrera-Siklody P and Canfield P C 2023 Philos. Mag. 103 561
[32] Weinberger T I, de Podesta C K, Chen J, Hodgson S A and Grosche F M 2023 SciPost Phys. 11 018
[33] Squire O P, Hodgson S A, Chen J, Fedoseev V, de Podesta C K, Weinberger T I, Alireza P L and Grosche F M 2023 Phys. Rev. Lett. 131 026001
[34] Canfield P C, Thompson J D and Fisk Z 1991 J. Appl. Phys. 70 5992
[35] Zhou Y, Chen X, An C, Zhou Y, Ling L, Yang J, Chen C, Zhang L, Tian M, Zhang Z and Yang Z 2019 Phys. Rev. B 99 054501
[36] Mao H, Xu J A and Bell P 1986 J. Geophys. Res. Solid Earth 91 4673
[37] Prescher C and Prakapenka V B 2015 High. Press. Res. 35 223
[38] Hunter B 1998 Newsletter 20
[39] Zhou Y, Chen X, Zhou Y, Yu J, Zhu X, An C, Park C, Wan X, Yang X and Yang Z 2022 Sci. China. Phys. Mech. 65 288211
[40] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T and Thomas A 2019 Appl. Phys. Lett. 114 092403
[41] Chandra Shekar N V, Sahu P C, Sanjay Kumar N R, Sekar M, Subramanian N, Kathirvel V, Chandra S and Rajagopalan M 2009 Solid State Phenom. 150 123
[42] Birch F 1947 Phys. Rev. 71 809
[43] Yang Y F, Fisk Z, Lee H O, Thompson J and Pines D 2008 Nature 454 611
[44] Iglesias J R, Lacroix C and Coqblin B 1997 Phys. Rev. B 56 11820
[45] Doniach S 1977 Physica B 91 231
[46] Song J, Bi W, Haskel D and Schilling J 2017 Phys. Rev. B 95 205138
[47] Matsubayashi K, Tanaka T, Sakai A, Nakatsuji S, Kubo Y and Uwatoko Y 2012 Phys. Rev. Lett. 109 187004
[48] Hegger H, Petrovic C, Moshopoulou E, Hundley M, Sarrao J, Fisk Z and Thompson J 2000 Phys. Rev. Lett. 84 4986
[1] Low-energy spin dynamics in a Kitaev material Na3Ni2BiO6 investigated by nuclear magnetic resonance
Xinyu Shi(史昕雨), Yi Cui(崔祎), Yanyan Shangguan(上官艳艳), Xiaoyu Xu(徐霄宇), Zhanlong Wu(吴占龙), Ze Hu(胡泽), Shuo Li(李硕), Kefan Du(杜柯帆), Ying Chen(陈颖), Long Ma(马龙), Zhengxin Liu(刘正鑫), Jinsheng Wen(温锦生), Jinshan Zhang(张金珊), and Weiqiang Yu(于伟强). Chin. Phys. B, 2024, 33(6): 067601.
[2] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[3] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[4] High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure
Xiaoxin Wu(武晓鑫), Yingjian Wang(王颖健), Siqi Li(李思琪), Juncheng Lv(吕俊呈), Jingshu Wang(王婧姝), Lihua Yang(杨丽华), Qi Zhang(张旗), Yanqing Liu(刘艳清), Junkai Zhang(张俊凯), and Hongsheng Jia(贾洪声). Chin. Phys. B, 2024, 33(5): 056201.
[5] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[6] Robust Tc in element molybdenum up to 160 GPa
Xinyue Wu(吴新月), Shumin Guo(郭淑敏), Jianning Guo(郭鉴宁), Su Chen(陈诉), Yulong Wang(王煜龙), Kexin Zhang(张可欣), Chengcheng Zhu(朱程程), Chenchen Liu(刘晨晨), Xiaoli Huang(黄晓丽), Defang Duan(段德芳), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(4): 047406.
[7] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[8] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[9] Spin gap in quasi-one-dimensional S=3/2 antiferromagnet CoTi2O5
Hao-Hang Xu(徐浩航), Qing-Yuan Liu(刘庆元), Chao Xin(辛潮), Qin-Xin Shen(申沁鑫), Jun Luo(罗军), Rui Zhou(周睿), Jin-Guang Cheng(程金光), Jian Liu(刘健), Ling-Ling Tao(陶玲玲), Zhi-Guo Liu(刘志国), Ming-Xue Huo(霍明学), Xian-Jie Wang(王先杰), and Yu Sui(隋郁). Chin. Phys. B, 2024, 33(3): 037505.
[10] Coexistence of antiferromagnetism and unconventional superconductivity in a quasi-one-dimensional flat-band system: Creutz lattice
Feng Xu(徐峰) and Lei Zhang(张磊). Chin. Phys. B, 2024, 33(3): 037402.
[11] Angular and planar transport properties of antiferromagnetic V5S8
Xiao-Kai Wu(吴晓凯), Bin Wang(王彬), De-Tong Wu(吴德桐), Bo-Wen Chen(陈博文), Meng-Juan Mi(弭孟娟), Yi-Lin Wang(王以林), and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(2): 027503.
[12] Ultrafast dynamics in photo-excited Mott insulator Sr3Ir2O7 at high pressure
Xia Yin(尹霞), Jianbo Zhang(张建波), Wang Dong(王东), Takeshi Nakagawa, Chunsheng Xia(夏春生), Caoshun Zhang(张曹顺), Weicheng Guo(郭伟程), Jun Chang(昌峻), and Yang Ding(丁阳). Chin. Phys. B, 2024, 33(1): 016103.
[13] Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光). Chin. Phys. B, 2024, 33(1): 017504.
[14] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[15] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
No Suggested Reading articles found!