|
|
Nonlinearly induced entanglement in dissipatively coupled optomechanical system |
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊)† |
Department of Physics, Ningbo University, Ningbo 315211, China |
|
|
Abstract Nonlinearly induced steady-state photon-phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system. Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently, a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.
|
Received: 09 March 2024
Revised: 08 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: We thank Chen-Jie Zhang for the instructive discussions. Project supported by the National Natural Science Foundation of China (Grant No. 12074206) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LY22A040005). Xuan Leng is supported by the National Natural Science Foundation of China (Grant No. 22103043). |
Corresponding Authors:
Wen-Zhao Zhang
E-mail: zhangwenzhao@nbu.edu.cn
|
Cite this article:
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊) Nonlinearly induced entanglement in dissipatively coupled optomechanical system 2024 Chin. Phys. B 33 060313
|
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski · M 2012 Rev. Mod. Phys. 84 777 [3] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001 [4] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135 [5] Galindo A and Martín-Delgado M A 2002 Rev. Mod. Phys. 74 347 [6] Maier T, Jarrell M, Pruschke T and Hettler M H 2005 Rev. Mod. Phys. 77 1027 [7] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 [8] Clausen C, Usmani I, Bussiíres F, Sangouard N, Afzelius M, de Riedmatten H and Gisin N 2011 Nature 469 508 [9] Zhao J, Li W and Gu Y 2013 Europhys. Lett. 104 10005 [10] Wu S X, Bai C H, Li G, Yu C S and Zhang T 2024 Opt. Express 32 260 [11] Yin X L and Liao J Q 2023 Phys. Rev. A 108 023728 [12] Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321 [13] Yu M, Shen H and Li J 2020 Phys. Rev. Lett. 124 213604 [14] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [15] Chen Z X, Lin Q, He B and Lin Z Y 2017 Opt. Express 25 17237 [16] Sinha K, Lin S Y and Hu B L 2015 Phys. Rev. A 92 023852 [17] Zhou L, Han Y, Jing J and Zhang W 2011 Phys. Rev. A 83 052117 [18] Beckey J L, Ma Y, Boyer V and Miao H 2019 Phys. Rev. D 100 083011 [19] Wang Y D, Chesi S and Clerk A A 2015 Phys. Rev. A 91 013807 [20] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601 [21] You X and Li Y 2019 Phys. Rev. A 100 053842 [22] Xia Y, Agrawal A R, Pluchar C M, Brady A J, Liu Z, Zhuang Q, Wilson D J and Zhang Z 2023 Nat. Photonics 17 470 [23] Fiaschi N, Hensen B, Wallucks A, Benevides R, Li J, Alegre T P M and Gröblacher S 2021 Nat. Photonics 15 817 [24] Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S and Gröblacher S 2018 Nature 556 473 [25] Elste F, Girvin S M and Clerk A A 2009 Phys. Rev. Lett. 102 207209 [26] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [27] Sawadsky A, Kaufer H, Nia R M, Tarabrin S P, Khalili F Y, Hammerer K and Schnabel R 2015 Phys. Rev. Lett. 114 043601 [28] Xuereb A, Schnabel R and Hammerer K 2011 Phys. Rev. Lett. 107 213604 [29] Li M, Pernice W H P and Tang H X 2009 Phys. Rev. Lett. 103 223901 [30] Meng J W, Tang S J, Sun J, Shen K, Li C, Gong Q and Xiao Y F 2022 Phys. Rev. Lett. 129 073901 [31] Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P and Barclay P E 2014 Phys. Rev. X 4 021052 [32] Weiss T, Bruder C and Nunnenkamp A 2013 New J. Phys. 15 045017 [33] Huang S, Deng L and Chen A 2023 Phys. Rev. A 107 013524 [34] Biehs S A and Agarwal G S 2023 Phys. Rev. B 108 035423 [35] Liu Y, Liu Y, Hu C S, Jiang Y K, Wu H and Li Y 2023 Phys. Rev. A 108 023503 [36] Tagantsev A K, Sokolov I V and Polzik E S 2018 Phys. Rev. A 97 063820 [37] Qu K and Agarwal G S 2015 Phys. Rev. A 91 063815 [38] Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69 [39] Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Nature 462 78 [40] Sete E A and Eleuch H 2012 Phys. Rev. A 85 043824 [41] Marquardt F, Harris J G E and Girvin S M 2006 Phys. Rev. Lett. 96 103901 [42] Ghobadi R, Bahrampour A R and Simon C 2011 Phys. Rev. A 84 033846 [43] Weis S, Riviíre R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [44] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [45] Wu Z, Luo R H, Zhang J Q, Wang Y H, Yang W and Feng M 2017 Phys. Rev. A 96 033832 [46] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825 [47] Li W, Li C and Song H 2017 Phys. Rev. E 95 022204 [48] Cheng J, Li W and Li J 2023 Phys. Rev. Res. 5 043197 [49] Rabl P 2011 Phys. Rev. Lett. 107 063601 [50] Huang R, Miranowicz A, Liao J Q, Nori F and Jing H 2018 Phys. Rev. Lett. 121 153601 [51] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853 [52] Zhang W Z, Cheng J, Liu J Y and Zhou L 2015 Phys. Rev. A 91 063836 [53] Wang G, Huang L, Lai Y C and Grebogi C 2014 Phys. Rev. Lett. 112 110406 [54] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [55] Kotler S, Peterson G A, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds R W, Aumentado J and Teufel J D 2021 Science 372 622 [56] Gao Y P and Wang C 2021 Opt. Express 29 25161 [57] Kilda D and Nunnenkamp A 2016 J. Opt. 18 014007 [58] Primo A G, Carvalho N C, Kersul C M, Frateschi N C, Wiederhecker G S and Alegre T P M 2020 Phys. Rev. Lett. 125 233601 [59] Boulier T, Bamba M, Amo A, Adrados C, Lemaitre A, Galopin E, Sagnes I, Bloch J, Ciuti C, Giacobino E and Bramati A 2014 Nat. Commun. 5 3260 [60] Zhang J, Mu Q X and Zhang W Z 2018 Chin. Phys. B 27 040304 [61] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [62] Plenio M B 2005 Phys. Rev. Lett. 95 090503 [63] Vitali D, Tombesi P, Woolley M J, Doherty A C and Milburn G J 2007 Phys. Rev. A 76 042336 [64] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603 [65] Meyer H M, Breyer M and Köhl M 2016 Appl. Phys. B 122 290 [66] Primo A G, Pinho P V, Benevides R, Gröblacher S, Wiederhecker G S and Alegre T P M 2023 Nat. Commun. 14 5793 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|