Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 097502    DOI: 10.1088/1674-1056/ad59fc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder

Chuanxiong Xu(徐川雄)1, Haoping Yu(于昊平)2, Mei Zhou(周梅)1, and Xuanting Ji(吉轩廷)1,3,†
1 Department of Applied Physics, China Agricultural University, Beijing 100083, China;
2 Department of Applied Mechanics, China Agricultural University, Beijing 100083, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Measuring the magneto-conductivity induced from impurities may help determine the impurity distribution and reveal the structure of a Weyl semimetal sample. To verify this, we utilize the Gaussian random disorder to simulate charged impurities in a two-node Weyl semimetal model and investigate the impact of charged impurities on magneto-conductivity in Weyl semimetals. We first compute the longitudinal magnetic conductivity and find that it is positive and increases proportionally with the parameter governing the Gaussian distribution of charged impurities, suggesting the presence of negative longitudinal magneto-resistivity. Then we consider both the intra-valley and inter-valley scattering processes to calculate the induced transverse magneto-conductivity in the model. Our findings indicate that both inter-valley and intra-valley scattering processes play important roles in the transverse magneto-conductivity. The locations of Weyl nodes can also be determined by magneto-conductivity measurements. This is possible if the magnetic field strength and the density of charged impurities are known. Alternatively, the measurement of magnetic conductivity may reveal the distribution of charged impurities in a given sample once the locations of the Weyl nodes have been determined. These findings can aid in detecting the structure of a Weyl semimetal sample, enhancing comprehension of magnetotransport in Weyl semimetals and promoting the development of valley electronics.
Keywords:  Weyl semimetal      inter-valley scattering      magneto-conductivity  
Received:  20 December 2023      Revised:  20 May 2024      Accepted manuscript online:  20 June 2024
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: We would like to thank Zhengang Zhu and Zhi-Fan Zhang for useful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. 61974162).
Corresponding Authors:  Xuanting Ji     E-mail:  jixuanting@cau.edu.cn

Cite this article: 

Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷) Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder 2024 Chin. Phys. B 33 097502

[1] Wan X G, Turner, A M and Vishwanath A 2011 Phys. Rev. B 83 205101
[2] Weng H M, Fang C, Fang Z, Bernevig B and Dai X 2015 Phys. Rev. X5 011029
[3] Lv B Q, Weng H M, Fu B B, et al. 2015 Phys. Rev. X 5 031013
[4] Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428
[5] Yang L X, Liu Z K, Sun Y, et al. 2015 Nat. Phys. 11 728
[6] Levy A L, Sushkov A B, Liu F G, Shen B, Ni N, Drew, H D and Jenkins G S 2020 Phys. Rev. B 101 125102
[7] Borisenko S, Evtushinsky D, Gibson Q, et al. 2019 Nat. Commun. 10 3424
[8] Soluyanov A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B 2015 Nature 527 495
[9] Deng K, Wan G, Deng P, et al. 2016 Nat. Phys. 12 1105
[10] Zheng H, Bian G, Chang G Q, et al. 2016 Phys. Rev. Lett. 117 266804
[11] Li X P, Deng K, Fu B T, et al. 2021 Phys. Rev. B 103 L081402
[12] Burkov A A 2014 Phys. Rev. Lett. 113 247203
[13] Gorbar E V, Miransky V A and Shovkovy I A 2014 Phys. Rev. B 89 085126
[14] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[15] Nielsen H B and Ninomiya M 1983 Phys. Rev. B 130 389
[16] Zhang C L, Xu S Y, Belopolski I, et al. 2016 Nat. Commun. 7 10735
[17] Takiguchi K, Wakabayashi Y K, Irie H, et al. 2020 Nat. Commun. 11 4969
[18] Cohn I A, Zybtsev S G, Orlov A P, et al. 2020 JETP Lett. 112 88
[19] Zhang Y, Huang X L, Zhang J L, Gao W S, Zhu X D and Pi L 2022 Chin. Phys. B 31 037102
[20] Wang Z G, Fu Z G, Zhang P and Zhang W 2022 Phys. Rev. B 105 205303
[21] Kawasuso A, Suda M and Murakawa H 2023 J. Appl. Phys. 133 223903
[22] Ahmad A and Sharma G 2021 Phys. Rev. B 105 205303
[23] Zhang N, Cheng B, Li H, Li L and Zeng C G 2021 Chin. Phys. B 30 087304
[24] Wadge A S, Grabecki G, Autieri C, et al. 2022 J. Phys.: Conden. Matter 34 125601
[25] Ong N P and Liang S 2021 Nat. Rev. Phys. 3 394
[26] Kundu A, Siu Z B, Yang H and Jalil M 2020 New J. Phys. 22 083081
[27] LaBarre1 P G, Dong L, Trinh1 J, Siegrist T and Ramirez A P 2020 J. Phys.: Conden. Matter 32 02LT01
[28] Shekhar C, Nayak A, Sun Y, et al. 2015 Nat. Phys. 11 645
[29] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[30] Steiner J F, Andreev A V and Pesin D A 2017 Phys. Rev. Lett. 119 036601
[31] Pesin D A, Mishchenko E G and Levchenko A 2015 Phys. Rev. B 92 174202
[32] Klier J, Gornyi I V and Mirlin A D 2015 Phys. Rev. B 92 205113
[33] Lu H Z, Zhang S B and Shen S B 2015 Phys. Rev. B 92 045203
[34] Lu, H Z and Shen S Q 2015 Phys. Rev. B 92 035203
[35] Sbierski B, Pohl G, Bergholtz E and Brouwer P W 2014 Phys. Rev. Lett. 113 026602
[36] Aji V 2012 Phys. Rev. B 85 241101
[37] Jiang B Y, Wang L J Y, Bi R, et al. 2021 Phys. Rev. Lett. 126 236601
[38] Behrends J, Kunst F K and Sbierski B 2018 Phys. Rev. B 97 064203
[39] Yan B H and Felser C 2017 Annu. Rev. Conden. Ma. P 8 337
[40] Zhang T T, Song Z D, Alexandradinata A, et al. 2018 Phys. Rev. Lett. 120 016401
[41] Zhang S B, Lu H Z and Shen S Q 2016 New J. Phys. 18 053039
[42] Yokouchi T, Ikeda Y, Morimoto T and Shiomi Y 2023 Phys. Rev. Lett. 130 136301
[43] Yu W W, Liu Y, Fang Y, Ke X L, Liu X, Han Z D and Zhang X M 2023 Front. Phys. 11 1260872
[44] Ji X T, Lu H Z, Zhu Z G and Su G 2017 AIP Adv. 7 105003
[45] Ji X T, Lu H Z, Zhu Z G and Su G 2018 J. Appl. Phys. 123 203901
[46] Shao J M and Yan L J 2019 AIP Adv. 9 045319
[47] Feng L T, Ma T C and Zheng Y S 2020 J. Phys.: Conden. Matter 32 205502
[48] Doucot B and Pasquier V 2008 The Quantum Hall Effect (Springer) pp. 23-53
[49] Miao S P,Tu D F and Zhou J H 2023 Chin. Phys. B 32 017502
[50] Ji X T and Sun Y W 2024 Eur. Phys. J. Plus 139 485
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[3] Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(6): 067102.
[4] Photoinduced Floquet higher-order Weyl semimetal in C6 symmetric Dirac semimetals
Xin-Xin Xu(许欣欣), Zi-Ming Wang(王梓名), Dong-Hui Xu(许东辉), and Chui-Zhen Chen(陈垂针). Chin. Phys. B, 2024, 33(6): 067801.
[5] Symmetry transformation of nonlinear optical current of tilted Weyl nodes and application to ferromagnetic MnBi2Te4
Zhuo-Cheng Lu(卢倬成) and Ji Feng(冯济). Chin. Phys. B, 2024, 33(4): 047303.
[6] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[7] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[8] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[9] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[10] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[11] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[12] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[13] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[14] Josephson current in an irradiated Weyl semimetal junction
Han Wang(王含) and Rui Shen(沈瑞). Chin. Phys. B, 2021, 30(7): 077406.
[15] Photoinduced Weyl semimetal phase and anomalous Hall effect in a three-dimensional topological insulator
Meng-Nan Chen(陈梦南) and Wen-Chao Chen(陈文潮). Chin. Phys. B, 2021, 30(11): 110308.
No Suggested Reading articles found!