CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder |
Chuanxiong Xu(徐川雄)1, Haoping Yu(于昊平)2, Mei Zhou(周梅)1, and Xuanting Ji(吉轩廷)1,3,† |
1 Department of Applied Physics, China Agricultural University, Beijing 100083, China; 2 Department of Applied Mechanics, China Agricultural University, Beijing 100083, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Measuring the magneto-conductivity induced from impurities may help determine the impurity distribution and reveal the structure of a Weyl semimetal sample. To verify this, we utilize the Gaussian random disorder to simulate charged impurities in a two-node Weyl semimetal model and investigate the impact of charged impurities on magneto-conductivity in Weyl semimetals. We first compute the longitudinal magnetic conductivity and find that it is positive and increases proportionally with the parameter governing the Gaussian distribution of charged impurities, suggesting the presence of negative longitudinal magneto-resistivity. Then we consider both the intra-valley and inter-valley scattering processes to calculate the induced transverse magneto-conductivity in the model. Our findings indicate that both inter-valley and intra-valley scattering processes play important roles in the transverse magneto-conductivity. The locations of Weyl nodes can also be determined by magneto-conductivity measurements. This is possible if the magnetic field strength and the density of charged impurities are known. Alternatively, the measurement of magnetic conductivity may reveal the distribution of charged impurities in a given sample once the locations of the Weyl nodes have been determined. These findings can aid in detecting the structure of a Weyl semimetal sample, enhancing comprehension of magnetotransport in Weyl semimetals and promoting the development of valley electronics.
|
Received: 20 December 2023
Revised: 20 May 2024
Accepted manuscript online: 20 June 2024
|
PACS:
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
Fund: We would like to thank Zhengang Zhu and Zhi-Fan Zhang for useful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. 61974162). |
Corresponding Authors:
Xuanting Ji
E-mail: jixuanting@cau.edu.cn
|
Cite this article:
Chuanxiong Xu(徐川雄), Haoping Yu(于昊平), Mei Zhou(周梅), and Xuanting Ji(吉轩廷) Induced magneto-conductivity in a two-node Weyl semimetal under Gaussian random disorder 2024 Chin. Phys. B 33 097502
|
[1] Wan X G, Turner, A M and Vishwanath A 2011 Phys. Rev. B 83 205101 [2] Weng H M, Fang C, Fang Z, Bernevig B and Dai X 2015 Phys. Rev. X5 011029 [3] Lv B Q, Weng H M, Fu B B, et al. 2015 Phys. Rev. X 5 031013 [4] Sun Y, Wu S C and Yan B H 2015 Phys. Rev. B 92 115428 [5] Yang L X, Liu Z K, Sun Y, et al. 2015 Nat. Phys. 11 728 [6] Levy A L, Sushkov A B, Liu F G, Shen B, Ni N, Drew, H D and Jenkins G S 2020 Phys. Rev. B 101 125102 [7] Borisenko S, Evtushinsky D, Gibson Q, et al. 2019 Nat. Commun. 10 3424 [8] Soluyanov A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X and Bernevig B 2015 Nature 527 495 [9] Deng K, Wan G, Deng P, et al. 2016 Nat. Phys. 12 1105 [10] Zheng H, Bian G, Chang G Q, et al. 2016 Phys. Rev. Lett. 117 266804 [11] Li X P, Deng K, Fu B T, et al. 2021 Phys. Rev. B 103 L081402 [12] Burkov A A 2014 Phys. Rev. Lett. 113 247203 [13] Gorbar E V, Miransky V A and Shovkovy I A 2014 Phys. Rev. B 89 085126 [14] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412 [15] Nielsen H B and Ninomiya M 1983 Phys. Rev. B 130 389 [16] Zhang C L, Xu S Y, Belopolski I, et al. 2016 Nat. Commun. 7 10735 [17] Takiguchi K, Wakabayashi Y K, Irie H, et al. 2020 Nat. Commun. 11 4969 [18] Cohn I A, Zybtsev S G, Orlov A P, et al. 2020 JETP Lett. 112 88 [19] Zhang Y, Huang X L, Zhang J L, Gao W S, Zhu X D and Pi L 2022 Chin. Phys. B 31 037102 [20] Wang Z G, Fu Z G, Zhang P and Zhang W 2022 Phys. Rev. B 105 205303 [21] Kawasuso A, Suda M and Murakawa H 2023 J. Appl. Phys. 133 223903 [22] Ahmad A and Sharma G 2021 Phys. Rev. B 105 205303 [23] Zhang N, Cheng B, Li H, Li L and Zeng C G 2021 Chin. Phys. B 30 087304 [24] Wadge A S, Grabecki G, Autieri C, et al. 2022 J. Phys.: Conden. Matter 34 125601 [25] Ong N P and Liang S 2021 Nat. Rev. Phys. 3 394 [26] Kundu A, Siu Z B, Yang H and Jalil M 2020 New J. Phys. 22 083081 [27] LaBarre1 P G, Dong L, Trinh1 J, Siegrist T and Ramirez A P 2020 J. Phys.: Conden. Matter 32 02LT01 [28] Shekhar C, Nayak A, Sun Y, et al. 2015 Nat. Phys. 11 645 [29] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [30] Steiner J F, Andreev A V and Pesin D A 2017 Phys. Rev. Lett. 119 036601 [31] Pesin D A, Mishchenko E G and Levchenko A 2015 Phys. Rev. B 92 174202 [32] Klier J, Gornyi I V and Mirlin A D 2015 Phys. Rev. B 92 205113 [33] Lu H Z, Zhang S B and Shen S B 2015 Phys. Rev. B 92 045203 [34] Lu, H Z and Shen S Q 2015 Phys. Rev. B 92 035203 [35] Sbierski B, Pohl G, Bergholtz E and Brouwer P W 2014 Phys. Rev. Lett. 113 026602 [36] Aji V 2012 Phys. Rev. B 85 241101 [37] Jiang B Y, Wang L J Y, Bi R, et al. 2021 Phys. Rev. Lett. 126 236601 [38] Behrends J, Kunst F K and Sbierski B 2018 Phys. Rev. B 97 064203 [39] Yan B H and Felser C 2017 Annu. Rev. Conden. Ma. P 8 337 [40] Zhang T T, Song Z D, Alexandradinata A, et al. 2018 Phys. Rev. Lett. 120 016401 [41] Zhang S B, Lu H Z and Shen S Q 2016 New J. Phys. 18 053039 [42] Yokouchi T, Ikeda Y, Morimoto T and Shiomi Y 2023 Phys. Rev. Lett. 130 136301 [43] Yu W W, Liu Y, Fang Y, Ke X L, Liu X, Han Z D and Zhang X M 2023 Front. Phys. 11 1260872 [44] Ji X T, Lu H Z, Zhu Z G and Su G 2017 AIP Adv. 7 105003 [45] Ji X T, Lu H Z, Zhu Z G and Su G 2018 J. Appl. Phys. 123 203901 [46] Shao J M and Yan L J 2019 AIP Adv. 9 045319 [47] Feng L T, Ma T C and Zheng Y S 2020 J. Phys.: Conden. Matter 32 205502 [48] Doucot B and Pasquier V 2008 The Quantum Hall Effect (Springer) pp. 23-53 [49] Miao S P,Tu D F and Zhou J H 2023 Chin. Phys. B 32 017502 [50] Ji X T and Sun Y W 2024 Eur. Phys. J. Plus 139 485 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|