Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080304    DOI: 10.1088/1674-1056/27/8/080304
GENERAL Prev   Next  

Dynamic quantum secret sharing protocol based on two-particle transform of Bell states

Yu-Tao Du(杜宇韬)1,2, Wan-Su Bao(鲍皖苏)1,2
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
Keywords:  quantum secret sharing      two-particle transform of Bell states      attack      dynamic  
Received:  07 December 2017      Revised:  13 April 2018      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002).
Corresponding Authors:  Wan-Su Bao     E-mail:  bws2010thzz@163.com

Cite this article: 

Yu-Tao Du(杜宇韬), Wan-Su Bao(鲍皖苏) Dynamic quantum secret sharing protocol based on two-particle transform of Bell states 2018 Chin. Phys. B 27 080304

[1] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p. 175
[3] Zeng G H, Ma W P and Wang X M 2001 Acta Electron. Sin. 29 1098
[4] Long G L, Wang C, Li Y S and Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332
[5] Ma H X, Bao W S, Li H W and Zhou C 2016 Chin. Phys. B 25 080309
[6] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[7] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[8] Gottesman D 2000 Phys. Rev. A 61 042311
[9] Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
[10] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
[11] Chau H F 2002 Phys. Rev. A 66 060302
[12] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[13] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[14] Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
[15] Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
[16] Zhang Z J 2005 Phys. Lett. A 342 60
[17] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044303
[18] Hsu L Y 2003 Phys. Rev. A 68 022306
[19] Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690
[20] He L, Zhen Zh, Chen L K, Li Zh D, Liu Ch, Li L, Liu N L, Ma X F, Chen Y Ao, and Pan J W 2016 Phys. Rev. Lett. 117 030501
[21] Yang Y G, Wang Y, Chai H, Teng Y and Zhang H 2011 Opt. Commun. 284 3479
[22] Jia H Y, Wen Q Y, Gao F, Qin S J and Guo F Z 2012 Phys. Lett. A 376 1035
[23] Hsu J L, Chong S K, Hwang T and Tsai C W 2013 Quantum Inf. Proc. 12 331
[24] Liu H W, Ma H Q, Wei K J, Yang X Q, Qu W X, Dou T Q, Chen Y T, Li R X and Zhu W 2016 Phys. Lett. A 380 2349
[25] Shamir A 1979 Commun. ACM 22 612
[26] Wang T Y and Li Y P 2013 Quantum Inf. Proc. 12 1991
[27] Du Y T and Bao W S 2013 Opt. Commun. 308 159
[28] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[29] Wang T Y and Wen Q Y 2011 Quantum Inf. Comput. 11 0434
[30] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 IEEE J. Quantum Electron. 47 630
[31] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Opt. Commun. 281 4553
[32] Wang T Y, Wen Q Y, Gao F, Lin S and Zhu F C 2008 Phys. Lett. A 373 65
[33] Gao G 2011 Opt. Commun. 284 902
[34] Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Int. J. Theor. Phys. 50 792
[35] Acín A 2001 Phys. Rev. Lett. 87 177901
[36] Duan R Y, Feng Y and Ying M S 2007 Phys. Rev. Lett. 98 100503
[37] Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. B 26 020303
[38] Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[5] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[6] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[7] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[8] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[9] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[10] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[11] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
No Suggested Reading articles found!