|
|
Dynamic quantum secret sharing protocol based on two-particle transform of Bell states |
Yu-Tao Du(杜宇韬)1,2, Wan-Su Bao(鲍皖苏)1,2 |
1 Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou Information Science and Technology Institute, Zhengzhou 450001, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
|
Received: 07 December 2017
Revised: 13 April 2018
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002). |
Corresponding Authors:
Wan-Su Bao
E-mail: bws2010thzz@163.com
|
Cite this article:
Yu-Tao Du(杜宇韬), Wan-Su Bao(鲍皖苏) Dynamic quantum secret sharing protocol based on two-particle transform of Bell states 2018 Chin. Phys. B 27 080304
|
[1] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[2] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (New York: IEEE) p. 175
|
[3] |
Zeng G H, Ma W P and Wang X M 2001 Acta Electron. Sin. 29 1098
|
[4] |
Long G L, Wang C, Li Y S and Deng F G 2011 Sci. Sin. Phys. Mech. Astron. 41 332
|
[5] |
Ma H X, Bao W S, Li H W and Zhou C 2016 Chin. Phys. B 25 080309
|
[6] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[7] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[8] |
Gottesman D 2000 Phys. Rev. A 61 042311
|
[9] |
Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
|
[10] |
Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
|
[11] |
Chau H F 2002 Phys. Rev. A 66 060302
|
[12] |
Guo G P and Guo G C 2003 Phys. Lett. A 310 247
|
[13] |
Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
|
[14] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
|
[15] |
Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
|
[16] |
Zhang Z J 2005 Phys. Lett. A 342 60
|
[17] |
Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044303
|
[18] |
Hsu L Y 2003 Phys. Rev. A 68 022306
|
[19] |
Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690
|
[20] |
He L, Zhen Zh, Chen L K, Li Zh D, Liu Ch, Li L, Liu N L, Ma X F, Chen Y Ao, and Pan J W 2016 Phys. Rev. Lett. 117 030501
|
[21] |
Yang Y G, Wang Y, Chai H, Teng Y and Zhang H 2011 Opt. Commun. 284 3479
|
[22] |
Jia H Y, Wen Q Y, Gao F, Qin S J and Guo F Z 2012 Phys. Lett. A 376 1035
|
[23] |
Hsu J L, Chong S K, Hwang T and Tsai C W 2013 Quantum Inf. Proc. 12 331
|
[24] |
Liu H W, Ma H Q, Wei K J, Yang X Q, Qu W X, Dou T Q, Chen Y T, Li R X and Zhu W 2016 Phys. Lett. A 380 2349
|
[25] |
Shamir A 1979 Commun. ACM 22 612
|
[26] |
Wang T Y and Li Y P 2013 Quantum Inf. Proc. 12 1991
|
[27] |
Du Y T and Bao W S 2013 Opt. Commun. 308 159
|
[28] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[29] |
Wang T Y and Wen Q Y 2011 Quantum Inf. Comput. 11 0434
|
[30] |
Gao F, Qin S J, Guo F Z and Wen Q Y 2011 IEEE J. Quantum Electron. 47 630
|
[31] |
Lin S, Wen Q Y, Gao F and Zhu F C 2008 Opt. Commun. 281 4553
|
[32] |
Wang T Y, Wen Q Y, Gao F, Lin S and Zhu F C 2008 Phys. Lett. A 373 65
|
[33] |
Gao G 2011 Opt. Commun. 284 902
|
[34] |
Yang Y G, Teng Y W, Chai H P and Wen Q Y 2011 Int. J. Theor. Phys. 50 792
|
[35] |
Acín A 2001 Phys. Rev. Lett. 87 177901
|
[36] |
Duan R Y, Feng Y and Ying M S 2007 Phys. Rev. Lett. 98 100503
|
[37] |
Zhou C, Zhang Y Y, Bao W S, Li H W, Wang Y and Jiang M S 2017 Chin. Phys. B 26 020303
|
[38] |
Bao H Z, Bao W S, Wang Y, Chen R K, Ma H X, Zhou C and Li H W 2017 Chin. Phys. B 26 050302
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|