Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080303    DOI: 10.1088/1674-1056/aca391
GENERAL Prev   Next  

An efficient multiparty quantum secret sharing scheme using a single qudit

Wenwen Hu(胡文文)1,†, Bangshu Xiong(熊邦书)2, and Rigui Zhou(周日贵)3
1. School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China;
3. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
Abstract  The aim of quantum secret sharing, as one of most promising components of quantum cryptograph, is one-to-multiparty secret communication based on the principles of quantum mechanics. In this paper, an efficient multiparty quantum secret sharing protocol in a high-dimensional quantum system using a single qudit is proposed. Each participant's shadow is encoded on a single qudit via a measuring basis encryption method, which avoids the waste of qudits caused by basis reconciliation. Security analysis indicates that the proposed protocol is immune to general attacks, such as the measure-resend attack, entangle-and-measure attack and Trojan horse attack. Compared to former protocols, the proposed protocol only needs to perform the single-qudit measurement operation, and can share the predetermined dits instead of random bits or dits.
Keywords:  quantum secret sharing      high-dimensional      measurement basis encrypted      security analysis  
Received:  04 July 2022      Revised:  07 November 2022      Accepted manuscript online:  17 November 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the Doctoral Funding of Nanchang Hangkong University (Grant No.EA202204231); the National Natural Science Foundation of China (Grant Nos.61866027 and 6217070290); the Key research project of Jiangxi Province (Grant No.20212BBE53017); and the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 20040501500).
Corresponding Authors:  Wenwen Hu     E-mail:  71141@nchu.edu.cn

Cite this article: 

Wenwen Hu(胡文文), Bangshu Xiong(熊邦书), and Rigui Zhou(周日贵) An efficient multiparty quantum secret sharing scheme using a single qudit 2023 Chin. Phys. B 32 080303

[1] Shor P 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, November 20-22 1994, Santa Fe, NM, USA, p. 124
[2] Grover L K 1996 28th Annual ACM Symposium on Theory of Computing, May 29 1996, Philadelphia, PA, USA, p. 212
[3] Bennett C H, and Brassard G 1984 IEEE International Conference on Computers, Systems and Signal Processing, December 1984, Bangalore, India, p. 175
[4] Vahid K, Alireza B and Saber B 2002 Phys. Rev. A 65 052331
[5] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315
[6] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
[7] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[8] Marco L and Stefano M 2005 Phys. Rev. Lett. 94 140501
[9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Lance A M, Symul T, Bowen W P, Sanders B C and Ping K L 2004 Phys. Rev. Lett. 92 177903
[11] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[12] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M and Weinfurter H 2005 Phys. Rev. Lett. 95 230505
[13] Gu J, Cao X Y, Yin H L and Chen Z B 2021 Opt. Express 29 9165
[14] Jia Z Y, Gu J, Li B H, Yin H L and Chen Z B 2021 Entropy 23 716
[15] Jakobi M, Simon C, Gisin N, Bancal J D, Branciard C, Walenta N and Zbinden H 2011 Phys. Rev. A 83 022301
[16] Yang Y G, Liu Z C, Chen X B, Zhou Y H and Shi W M 2017 Sci. China-Phys. Mech. Astron. 60 120311
[17] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express 29 10162
[18] Li Z, Cao X Y, Li C L, Weng C X, Gu J, Yin H L and Chen Z B 2021 Quantum Sci. Technol. 6 045019
[19] Shamir A 1979 Commun. ACM 22 612
[20] Blakley G R 1979 International Workshop on Managing Requirements Knowledge, 04-07 June 1979, New York, NY, USA, p. 313
[21] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[22] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[23] Gottesman D 2000 Phys. Rev. A 61 042311
[24] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[25] Li X, Long G L and Deng F G 2004 Phys. Rev. A 69 052307
[26] Song X L, Liu Y B and Deng H Y 2017 Sci. Rep. 7 6366
[27] Kartick S and Hari O 2020 Quantum Inf. Process. 19 73
[28] Yan F L and Gao T 2005 Phys. Rev. A 72 012304
[29] Yan F L, Gao T and Li Y C 2008 Chin. Phys. Lett. 25 1187
[30] Wang M M, Chen X B and Yang Y X 2014 Quantum Inf. Process. 13 429
[31] Bai C M, Li Z H, Si M M and Li Y M 2017 Eur. Phys. J. D 71 255
[32] Yang C W and Tsai C W 2020 Quantum Inf. Process. 19 162
[33] Hu W W, Zhou R G, Li X, Fan P and Tan C Y 2021 Quantum Inf. Process. 20 159
[34] Li L Z, Qiu D W and Mateus P 2013 J. Phys. A: Math. Theor. 46 045304
[35] Hu W W, Zhou R G and Luo J 2022 Chin. J. Phys. 77 1701
[36] Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501
[37] Gao Z K, Li T and Li Z H 2020 Sci. China-Phys. Mech. Astron. 63 120311
[38] Tsai C W, Yang C W and Lin J 2022 Quantum Inf. Process. 21 63
[39] Han L F, Liu Y M and Liu J 2008 Opt. Commun. 281 2690
[40] Qin H W 2016 J. Chin. Inst. Eng. 39 623
[41] Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501
[42] Inoue R, Yonehara T, Miyamoto Y, Koashi M and Kozuma M 2009 Phys. Rev. Lett. 103 110503
[43] Vahid K, Alireza B and Saber B 2002 Phys. Rev. A 65 042320
[44] Wang X, Liu Y M and Han L F 2008 Int. J. Quantum Inf. 6 1155
[45] Yang W, Huang L S and Shi R H 2013 Quantum Inf. Process. 12 2465
[46] Wang M M, Tian L T, and Qu Z G 2018 International Conference on Cloud Computing and Security, June 22-24, 2018, Haikou, Hainan, China, p. 23
[47] Mashhadi S 2019 Quantum Inf. Process. 18 11
[48] Qin H W, Tang W K S and Tso R L 2020 IEEE J. Sel. Top. Quant. 26 6600106
[49] Pittenge A O and Rubin M H 2004 Linear Algebra Appl. 390 255
[50] Boyer M, Kenigsberg D and Mor T 2007 Phys. Rev. Lett. 99 140501
[51] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[52] Cai Q Y 2006 Phys. Lett. A 351 23
[53] Fonseca A 2019 Phys. Rev. A 100 062311
[54] Bertlmann R A and Krammer P 2008 J. Phys. A 41 235303
[1] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
[2] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[3] Coherence migration in high-dimensional bipartite systems
Zhi-Yong Ding(丁智勇), Pan-Feng Zhou(周攀峰), Xiao-Gang Fan(范小刚),Cheng-Cheng Liu(刘程程), Juan He(何娟), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(6): 060308.
[4] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[5] Majorana stellar representation for mixed-spin (s, 1/2) systems
Yu-Guo Su(苏玉国), Fei Yao(姚飞), Hong-Bin Liang(梁宏宾), Yan-Ming Che(车彦明), Li-Bin Fu(傅立斌), and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2021, 30(3): 030303.
[6] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[7] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[8] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[9] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
[10] Dynamic quantum secret sharing protocol based on two-particle transform of Bell states
Yu-Tao Du(杜宇韬), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2018, 27(8): 080304.
[11] Time-energy high-dimensional one-side device-independent quantum key distribution
Hai-Ze Bao(包海泽), Wan-Su Bao(鲍皖苏), Yang Wang(汪洋), Rui-Ke Chen(陈瑞柯), Hong-Xin Ma(马鸿鑫), Chun Zhou(周淳), Hong-Wei Li(李宏伟). Chin. Phys. B, 2017, 26(5): 050302.
[12] Controlled remote implementation of quantum operations with high-dimensional systems
Zhan You-Bang (詹佑邦), Li Xiao-Wei (李晓薇), Ma Peng-Cheng (马鹏程), Shi Jin (施锦). Chin. Phys. B, 2013, 22(4): 040306.
[13] Cryptanalysis and improvement of a quantum secret sharing scheme based on $\chi$-type entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2012, 21(1): 010307.
[14] Quantum secret sharing based on quantum error-correcting codes
Zhang Zu-Rong (张祖荣), Liu Wei-Tao (刘伟涛), Li Cheng-Zu (李承祖). Chin. Phys. B, 2011, 20(5): 050309.
[15] Efficient quantum secret sharing scheme with two-particle entangled states
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) . Chin. Phys. B, 2011, 20(4): 040306.
No Suggested Reading articles found!