|
|
An efficient multiparty quantum secret sharing scheme using a single qudit |
Wenwen Hu(胡文文)1,†, Bangshu Xiong(熊邦书)2, and Rigui Zhou(周日贵)3 |
1. School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China; 2. Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China; 3. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China |
|
|
Abstract The aim of quantum secret sharing, as one of most promising components of quantum cryptograph, is one-to-multiparty secret communication based on the principles of quantum mechanics. In this paper, an efficient multiparty quantum secret sharing protocol in a high-dimensional quantum system using a single qudit is proposed. Each participant's shadow is encoded on a single qudit via a measuring basis encryption method, which avoids the waste of qudits caused by basis reconciliation. Security analysis indicates that the proposed protocol is immune to general attacks, such as the measure-resend attack, entangle-and-measure attack and Trojan horse attack. Compared to former protocols, the proposed protocol only needs to perform the single-qudit measurement operation, and can share the predetermined dits instead of random bits or dits.
|
Received: 04 July 2022
Revised: 07 November 2022
Accepted manuscript online: 17 November 2022
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
Fund: Project supported by the Doctoral Funding of Nanchang Hangkong University (Grant No.EA202204231); the National Natural Science Foundation of China (Grant Nos.61866027 and 6217070290); the Key research project of Jiangxi Province (Grant No.20212BBE53017); and the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 20040501500). |
Corresponding Authors:
Wenwen Hu
E-mail: 71141@nchu.edu.cn
|
Cite this article:
Wenwen Hu(胡文文), Bangshu Xiong(熊邦书), and Rigui Zhou(周日贵) An efficient multiparty quantum secret sharing scheme using a single qudit 2023 Chin. Phys. B 32 080303
|
[1] Shor P 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, November 20-22 1994, Santa Fe, NM, USA, p. 124 [2] Grover L K 1996 28th Annual ACM Symposium on Theory of Computing, May 29 1996, Philadelphia, PA, USA, p. 212 [3] Bennett C H, and Brassard G 1984 IEEE International Conference on Computers, Systems and Signal Processing, December 1984, Bangalore, India, p. 175 [4] Vahid K, Alireza B and Saber B 2002 Phys. Rev. A 65 052331 [5] Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Y, Yin H L and Chen Z B 2022 PRX Quantum 3 020315 [6] Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601 [7] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [8] Marco L and Stefano M 2005 Phys. Rev. Lett. 94 140501 [9] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [10] Lance A M, Symul T, Bowen W P, Sanders B C and Ping K L 2004 Phys. Rev. Lett. 92 177903 [11] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829 [12] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M and Weinfurter H 2005 Phys. Rev. Lett. 95 230505 [13] Gu J, Cao X Y, Yin H L and Chen Z B 2021 Opt. Express 29 9165 [14] Jia Z Y, Gu J, Li B H, Yin H L and Chen Z B 2021 Entropy 23 716 [15] Jakobi M, Simon C, Gisin N, Bancal J D, Branciard C, Walenta N and Zbinden H 2011 Phys. Rev. A 83 022301 [16] Yang Y G, Liu Z C, Chen X B, Zhou Y H and Shi W M 2017 Sci. China-Phys. Mech. Astron. 60 120311 [17] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express 29 10162 [18] Li Z, Cao X Y, Li C L, Weng C X, Gu J, Yin H L and Chen Z B 2021 Quantum Sci. Technol. 6 045019 [19] Shamir A 1979 Commun. ACM 22 612 [20] Blakley G R 1979 International Workshop on Managing Requirements Knowledge, 04-07 June 1979, New York, NY, USA, p. 313 [21] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648 [22] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162 [23] Gottesman D 2000 Phys. Rev. A 61 042311 [24] Guo G P and Guo G C 2003 Phys. Lett. A 310 247 [25] Li X, Long G L and Deng F G 2004 Phys. Rev. A 69 052307 [26] Song X L, Liu Y B and Deng H Y 2017 Sci. Rep. 7 6366 [27] Kartick S and Hari O 2020 Quantum Inf. Process. 19 73 [28] Yan F L and Gao T 2005 Phys. Rev. A 72 012304 [29] Yan F L, Gao T and Li Y C 2008 Chin. Phys. Lett. 25 1187 [30] Wang M M, Chen X B and Yang Y X 2014 Quantum Inf. Process. 13 429 [31] Bai C M, Li Z H, Si M M and Li Y M 2017 Eur. Phys. J. D 71 255 [32] Yang C W and Tsai C W 2020 Quantum Inf. Process. 19 162 [33] Hu W W, Zhou R G, Li X, Fan P and Tan C Y 2021 Quantum Inf. Process. 20 159 [34] Li L Z, Qiu D W and Mateus P 2013 J. Phys. A: Math. Theor. 46 045304 [35] Hu W W, Zhou R G and Luo J 2022 Chin. J. Phys. 77 1701 [36] Fu Y, Yin H L, Chen T Y and Chen Z B 2015 Phys. Rev. Lett. 114 090501 [37] Gao Z K, Li T and Li Z H 2020 Sci. China-Phys. Mech. Astron. 63 120311 [38] Tsai C W, Yang C W and Lin J 2022 Quantum Inf. Process. 21 63 [39] Han L F, Liu Y M and Liu J 2008 Opt. Commun. 281 2690 [40] Qin H W 2016 J. Chin. Inst. Eng. 39 623 [41] Molina-Terriza G, Vaziri A, Ursin R and Zeilinger A 2005 Phys. Rev. Lett. 94 040501 [42] Inoue R, Yonehara T, Miyamoto Y, Koashi M and Kozuma M 2009 Phys. Rev. Lett. 103 110503 [43] Vahid K, Alireza B and Saber B 2002 Phys. Rev. A 65 042320 [44] Wang X, Liu Y M and Han L F 2008 Int. J. Quantum Inf. 6 1155 [45] Yang W, Huang L S and Shi R H 2013 Quantum Inf. Process. 12 2465 [46] Wang M M, Tian L T, and Qu Z G 2018 International Conference on Cloud Computing and Security, June 22-24, 2018, Haikou, Hainan, China, p. 23 [47] Mashhadi S 2019 Quantum Inf. Process. 18 11 [48] Qin H W, Tang W K S and Tso R L 2020 IEEE J. Sel. Top. Quant. 26 6600106 [49] Pittenge A O and Rubin M H 2004 Linear Algebra Appl. 390 255 [50] Boyer M, Kenigsberg D and Mor T 2007 Phys. Rev. Lett. 99 140501 [51] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302 [52] Cai Q Y 2006 Phys. Lett. A 351 23 [53] Fonseca A 2019 Phys. Rev. A 100 062311 [54] Bertlmann R A and Krammer P 2008 J. Phys. A 41 235303 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|