Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070308    DOI: 10.1088/1674-1056/ace159
GENERAL Prev   Next  

Efficient semi-quantum secret sharing protocol using single particles

Ding Xing(邢丁)1, Yifei Wang(王艺霏)1, Zhao Dou(窦钊)1,†, Jian Li(李剑)2, Xiubo Chen(陈秀波)1, and Lixiang Li(李丽香)1
1 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Semi-quantum secret sharing (SQSS) is a branch of quantum cryptography which only requires the dealer to have quantum capabilities, reducing the difficulty of protocol implementation. However, the efficiency of the SQSS protocol still needs to be further studied. In this paper, we propose a semi-quantum secret sharing protocol, whose efficiency can approach 100% as the length of message increases. The protocol is based on single particles to reduce the difficulty of resource preparation. Particle reordering, a simple but effective operation, is used in the protocol to improve efficiency and ensure security. Furthermore, our protocol can share specific secrets while most SQSS protocols could not. We also prove that the protocol is secure against common attacks.
Keywords:  semi-quantum secret sharing      efficiency      single particles      specific secret      particle reordering  
Received:  02 April 2023      Revised:  21 June 2023      Accepted manuscript online:  25 June 2023
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1805405), the 111 Project (Grant No. B21049), the National Natural Science Foundation of China (Grant No. 62272051), the Foundation of Guizhou Provincial Key Laboratory of Public Big Data (Grant No. 2019BDKFJJ014), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2019XD-A02 and 2020RC38).
Corresponding Authors:  Zhao Dou     E-mail:  dou@bupt.edu.cn

Cite this article: 

Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香) Efficient semi-quantum secret sharing protocol using single particles 2023 Chin. Phys. B 32 070308

[1] Shamir A 1979 Commun. ACM 22 612
[2] Blakley G R 1979 1979 International Workshop on Managing Requirements Knowledge, June 4-7, 1979, New York, USA, p. 313
[3] Brickell E F 1990 Workshop on the Theory and Application of Cryptographic Techniques, April 10–13, 1989, Houthalen, Belgium, p. 468
[4] Brickell E F and Davenport D M 1991 J. Cryptol. 4 123
[5] Chuang I L and Yamamoto Y 1995 Phys. Rev. A 52 3489
[6] Plenio M B and Knight P L 1996 Phys. Rev. A 53 2986
[7] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[8] Gottesman D 2000 Phys. Rev. A 61 042311
[9] Guo G P and Guo G C 2003 Phys. Lett. A 310 247
[10] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[11] Hsieh C R and Tzonelih H 2010 Commun. Theor. Phys. 54 1019
[12] Liu Z H, Chen H W, Xu J, Liu W J and Li Z Q 2012 Quantum Inf. Process. 11 1785
[13] Wang M M, Wang W, Chen J G and Farouk A 2015 Quantum Inf. Process. 14 4211
[14] Qin H, Zhu X and Dai Y 2015 Quantum Inf. Process. 14 2997
[15] Grice W P and Qi B 2019 Phys. Rev. A 100 022339
[16] Boyer M, Kenigsberg D and Mor T 2007 2007 First International Conference on Quantum, Nano, and Micro Technologies, January 2-6, 2007, Guadeloupe, French Caribbean, p. 10
[17] Boyer M, Gelles R, Kenigsberg D and Mor T 2009 Phys. Rev. A 79 032341
[18] Zou X, Qiu D, Li L, Wu L and Li L 2009 Phys. Rev. A 79 052312
[19] Wang M M, Gong L M and Shao L H 2019 Quantum Inf. Process. 18 260
[20] Shukla C, Thapliyal K and Pathak A 2017 Quantum Inf. Process. 16 295
[21] Zou X F and Qiu D W 2014 Sci. China Phys. Mech. 57 1696
[22] Yang C W and Tsai C W 2020 Quantum Inf. Process. 19 126
[23] Lin P H, Hwang T and Tsai C W 2019 Quantum Inf. Process. 18 207
[24] Jiang L Z 2020 Quantum Inf. Process. 19 180
[25] Ye C Q, Li J, Chen X B and Tian Y 2021 Quantum Inf. Process. 20 262
[26] Li Q, Chan W H and Long D Y 2010 Phys. Rev. A 82 022303
[27] Wang J, Zhang S, Zhang Q and Tang C J 2012 Int. J. Quantum Inf. 10 1250050
[28] Li L, Qiu D and Mateus P 2013 J. Phys. A Math. Theor. 46 045304
[29] Xie C, Li L and Qiu D 2015 Int. J. Theor. Phys. 54 3819
[30] Li Z, Li Q, Liu C, Peng Y, Chan W H and Li L 2018 Quantum Inf. Process. 17 285
[31] Ye C Q and Ye T Y 2018 Commun. Theor. Phys. 70 661
[32] Tian Y, Li J, Chen X B, Ye C Q and Li H J 2021 Quantum Inf. Process. 20 217
[33] Gisin N, Fasel S, Kraus B, Zbinden H and Ribordy G 2006 Phys. Rev. A 73 022320
[34] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[1] Broadband and wide-angle plane focal surface Luneburg lens
Jue Li(李珏), Yangyang Zhou(周杨阳), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2023, 32(6): 064210.
[2] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[3] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[6] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[7] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[8] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[9] Advantage of populous countries in the trends of innovation efficiency
Dan-Dan Hu(胡淡淡), Xue-Jin Fang(方学进), and Xiao-Pu Han(韩筱璞). Chin. Phys. B, 2022, 31(6): 068903.
[10] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[11] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[12] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[13] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[14] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[15] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
No Suggested Reading articles found!