|
|
Efficient quantum secret sharing scheme with two-particle entangled states |
Zhu Zhen-Chao(朱珍超)a)b),Zhang Yu-Qing(张玉清)b)†,and Fu An-Min(付安民)a)b) |
a Key Lab of Computer Networks and Information Security of Ministry of Education, Xidian University, Xi'an 710071, China; b National Computer Network Intrusion Protection Center, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time.
|
Received: 01 July 2010
Revised: 30 November 2010
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 90718007) and the National Natural Science Foundation of China (Grant Nos. 60773135 and 60970140). |
Cite this article:
Zhu Zhen-Chao(朱珍超), Zhang Yu-Qing(张玉清), and Fu An-Min(付安民) Efficient quantum secret sharing scheme with two-particle entangled states 2011 Chin. Phys. B 20 040306
|
[1] |
Shamir A 1979 Comm. ACM. 22 612
|
[2] |
Shor P W 1994 Proc. 35th Annual Symp. on Foundations of Computer Science (New York: IEEE) p. 124
|
[3] |
Hillery M, Buvzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[4] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[5] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[6] |
Bandyopadhyay S 2000 Phys. Rev. A 62 012308
|
[7] |
Tittel W, Zbinden H and Gisin N 2001 Phys. Rev. A 63 042301
|
[8] |
Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320
|
[9] |
Guo G P and Guo G C 2003 Phys. Lett. A 310 247
|
[10] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[11] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[12] |
Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
|
[13] |
Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
|
[14] |
Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329
|
[15] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
|
[16] |
Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
|
[17] |
Yan F L and Gao T 2005 Phys. Rev. A 72 012304
|
[18] |
Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
|
[19] |
Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
|
[20] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
|
[21] |
Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
|
[22] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[23] |
Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
|
[24] |
Sun Y, Du J Z, Qin S J, Wen Q Y and Zhu F C 2008 Acta Phys. Sin. 57 4689 (in Chinese)
|
[25] |
Yang Y G and Wen Q Y 2009 Phys. Lett. A 373 396
|
[26] |
Yu Y F and Zhang Z M 2009 Chin. Phys. B 18 1342
|
[27] |
Song T T, Zhang J, Gao F, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 1333
|
[28] |
Wang C and Zhang Y 2009 Chin. Phys. B 18 3238
|
[29] |
Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690
|
[30] |
Yang Y G, Cao W F and Wen Q Y 2010 Chin. Phys. B 19 050306
|
[31] |
Liu W T, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 3148
|
[32] |
Zhang B B, Wang D Q, Huang S S and Liu Y 2009 Chin. Phys. B 18 2149
|
[33] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[34] |
Cabello A 2000 Phys. Rev. Lett. 85 5635
|
[35] |
Cai Q Y 2006 Phys. Lett. A 351 23
|
[36] |
Deng F G, Zhou P, Li X H, Li C Y and Zhou H Y 2005 it arXiv:quant-ph/0508168
|
[37] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[38] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[39] |
Gao F, Qin S J, Guo F Z and Wen Q Y 2010 arXiv: quant-ph/1009.2545
|
[40] |
Deng F G, Li X H and Zhou H Y 2007 arXiv: quant-ph/07050279
|
[41] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing (New York: IEEE) p. 175
|
[42] |
Jin X M, Ren J G, Yang B, Yi Z H, Zhou F, Xu X F, Wang S K, Yang D, Hu Y F, Jiang S, Yang T, Yin H, Chen K, Peng C Z and Pan J W 2010 Nat. Photonics 4 376
|
[43] |
Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|