|
|
Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles |
Gan Gao(高甘)1,2,3,† |
1 Department of Electrical Engineering, Tongling University, Tongling 244061, China; 2 Anhui Engineering Research Center of Intelligent Manufacturing of Copper-based Materials, Tongling University, Tongling 244061, China; 3 Anhui Joint Key Laboratory of Critical Technologies for High-End Copper-Based New Materials, Tongling University, Tongling 244061, China |
|
|
Abstract In paper [Chin. Phys. B 32 070308 (2023)], Xing et al. proposed a semi-quantum secret sharing protocol by using single particles. We study the security of the proposed protocol and find that it is not secure, that is, the three dishonest agents, Bob, Charlie and Emily can collude to obtain Alice's secret without the help of David.
|
Received: 23 October 2023
Revised: 10 January 2024
Accepted manuscript online: 22 February 2024
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the Offline Course Program of “Experiment of College Physics” in the 2022-year Anhui Provincial Quality Engineering Program (Grant No. 2022xxkc134), the Program for Academic Leader Reserve Candidates in Tongling University (Grant Nos. 2020tlxyxs43 and 2014tlxyxs30), the Talent Scientific Research Foundation of Tongling University (Grant No. 2015tlxyrc01), and the 2014- year Program for Excellent Youth Talents in University of Anhui Province. |
Corresponding Authors:
Gan Gao
E-mail: gaogan0556@163.com
|
Cite this article:
Gan Gao(高甘) Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles 2024 Chin. Phys. B 33 040301
|
[1] Bennett C H and Brassard G 1984 IEEE International Conference on Computers, Systems and Signal Processin, 1984, Bangalore, India, p. 175 [2] Ekert A K 1992 Phys. Rev. Lett. 67 661 [3] Deng F G and Long G L 2004 Phys. Rev. A 70 012311 [4] Cai Q and Tan Y 2006 Phys. Rev. A 73 032305 [5] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321 [6] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [7] Gong L H, Song H C, He C S, Liu Y and Zhou N R 2014 Phys. Scr. 89 035101 [8] Yan X Y, Zhou N R, Gong L H, Wang Y Q and Wen X J 2019 Quantum Inf. Process. 18 271 [9] Guo Y, Su Y, Zhou J, Zhang L and Huang D 2019 Chin. Phys. B 28 010305 [10] Long G L and Liu X X 2002 Phys. Rev. A 65 032302 [11] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [12] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305 [13] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338 [14] Song J, Zhu A D and Zhang S 2007 Chin. Phys. 16 621 [15] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149 [16] Wang C, Xiao L, Wang W Y, Zhang G Y and Long G L 2009 J. Opt. Soc. Am. B 26 2072 [17] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309 [18] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305 [19] Dong L, Xiu X M, Gao Y J, Ren Y P and Liu H W 2011 Opt. Commun. 284 905 [20] Kao S H and Hwang T 2013 Chin. Phys. B 22 060308 [21] Ren B C, Wei H R, Hua M, Li T and Deng F G 2013 Eur. Phys. J. D 67 30 [22] Gong L H, Liu Y and Zhou N R 2013 Int. J. Theor. Phys. 52 3260 [23] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501 [24] Wu X D, Zhou L, Zhong W and Sheng Y B 2020 Quantum Inf. Process. 19 354 [25] Xiao Y X, Zhou L, Zhong W, Du M M and Sheng Y B 2023 Quantum Inf. Process. 22 339 [26] Hong Y P, Zhou L, Zhong W and Sheng Y B 2023 Quantum Inf. Process. 22 111 [27] Hillery M, Buzk V and Berthiaume A 1999 Phys. Rev. A 59 1829 [28] Bagherinezhad S and Karimipour V 2003 Phys. Rev. A 67 044302 [29] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M and Weinfurter H 2005 Phys. Rev. Lett. 95 230505 [30] Li C M, Chang C C and Hwang T 2006 Phys. Rev. A 73 016301 [31] Wang H F, Ji X and Zhang S 2006 Phys. Lett. A 358 11 [32] Deng F G, Zhou H Y and Long G L 2006 J. Phys. A:Math. Gen. 39 14089 [33] Xue Z Y, Yi Y M and Cao Z L 2006 Chin. Phys. B 15 1421 [34] Guo Y, Zeng G H and Chen Z G 2007 Chin. Phys. Lett. 24 863 [35] Markham D and Sanders B C 2008 Phys. Rev. A 78 042309 [36] Wang C and Zhang Y 2009 Chin. Phys. B 18 3238 [37] Gu B, Li C Q, Xu F and Chen Y L 2009 Chin. Phys. B 18 4690 [38] Gao G 2009 Opt. Commun. 282 4464 [39] Gao G 2009 Commun. Theor. Phys. 52 421 [40] Zhu Z C and Zhang Y Q 2010 Chin. Phys. Lett. 27 060303 [41] Gao G and Wang L 2010 Int. J. Theor. Phys. 49 2852 [42] Gao G 2010 Opt. Commun. 283 2997 [43] Zhu Z C, Zhang Y Q and Fu A M 2011 Chin. Phys. B 20 040306 [44] Gao G 2011 Opt. Commun. 284 902 [45] Gao G, Fang M and Cheng M T 2012 Chin. Phys. Lett. 29 110305 [46] Zhu Z C, Zhang Y Q and Fu A M 2012 Chin. Phys. B 21 010307 [47] Chen X B, Niu X X, Zhou X J and Yang Y X 2013 Quantum Inf. Process. 12 365 [48] Gao G 2013 Quantum Inf. Process. 12 55 [49] Chen X B, Dou Z, Xu G, He X Y and Yang Y X 2017 Sci. Rep. 7 39845 [50] Gao G, Wang Y and Wang D 2016 Mod. Phys. Lett. B 30 1650130 [51] Gu J, Cao X Y, Yin H L and Chen Z B 2021 Opt. Express 29 9165 [52] Gu J, Xie Y M, Liu W B, Fu Y, Yin H L and Chen Z B 2021 Opt. Express 29 32244 [53] Jia Z Y, Gu J, Li B H, Yin H L and Chen Z B 2021 Entropy 23 716 [54] Chou Y H, Zeng G J, Chen X Y and Kuo S Y 2021 Sci. Rep. 11 6093 [55] Ju X X, Zhong W, Sheng Y B and Zhou L 2022 Chin. Phys. B 31 100302 [56] Xing D, Wang Y F, Dou Z, Li J, Chen X B and Li L X 2023 Chin. Phys. B 32 070308 [57] Kuo S Y, Tseng K C, Yang C C and Chou Y H 2023 EPJ Quantum Technol. 10 29 [58] Shen A, Cao X Y, Wang Y, Fu Y, Gu J, Liu W B, Weng C X, Yin H L and Chen Z B 2023 Sci. China Phys. Mech. Astron. 66 260311 [59] Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L and Chen Z B 2023 Phys. Rev. Res. 5 033077 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|