Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070303    DOI: 10.1088/1674-1056/ad3b81
GENERAL Prev   Next  

Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme

Huan-Yao Jiang(姜欢窈)1,†, Min Nie(聂敏)1, Guang Yang(杨光)1, Ai-Jing Sun(孙爱晶)1, Mei-Ling Zhang(张美玲)1, and Chang-Xing Pei(裴昌幸)2
1 School of Communications and Information Engineering & School of Artificial Intelligence, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China
Abstract  In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme (MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol. We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
Keywords:  discrete modulation      continuous variable      quantum secret sharing scheme  
Received:  26 December 2023      Revised:  29 February 2024      Accepted manuscript online:  07 April 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348 and 61201194).
Corresponding Authors:  Huan-Yao Jiang     E-mail:  1134319164@qq.com

Cite this article: 

Huan-Yao Jiang(姜欢窈), Min Nie(聂敏), Guang Yang(杨光), Ai-Jing Sun(孙爱晶), Mei-Ling Zhang(张美玲), and Chang-Xing Pei(裴昌幸) Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme 2024 Chin. Phys. B 33 070303

[1] Blakley G R 1979 Managing Requirements Knowledge, International Workshop on IEEE-CS p. 313
[2] Adi S 1979 Commun. ACM 22 612
[3] Hillery M, Buek V and Berthiaume 2002 Phys. Rev. A 59 1829
[4] Cleve R, Gottesman D and Lo H K 2002 Phys. Rev. Lett. 83 648
[5] Wootters W K and Zurek W H 1982 Nature 299 125012
[6] Bang J Y and Berger M S 2006 Phys. Rev. D 74 125012
[7] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photon. 12 1012
[8] Pirandola S, Ottaviani C, Spedalieri G, et al. 2015 Nat. Photonics 9 397
[9] Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312
[10] Leverrier A, Grangier P 2009 Phys. Rev. Lett 102 180504
[11] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[12] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[13] Denys A, Brown P and Leverrier A 2021 Quantum 5 540
[14] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504
[15] Lau H K and Weedbrook C 2013 Phys. Rev. A 88 042313
[16] Ghorai S, Grangier P, Diamanti E, et al. 2019 Phys. Rev. X 9 021059
[17] Almeida M, Pereira D, Muga N J, et al. 2021 Opt. Express 29 38669
[18] Liao Q, Liu X, Ou Bo and Fu X 2023 IEEE Trans. Commun 71 6051
[19] Weedbrook C,Pirandola S, García-Patrón R, et al. 2012 Rev. Mod. Phys 84 621
[20] Djordjevic I 2019 IEEE Photonics Journal 11 1
[21] Becerra F E, Fan J, Baumgartner G, et al. 2013 Nat. Photonics 7 147
[22] Ding J Z 2022 Research on Improvement of Discrete Modulation Continuous Variable Quantum Key Distribution Scheme (Hunan: Central South University) (in Chinese)
[23] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903
[24] Grice W P and Qi B 2019 Phys. Rev. A 100 022339
[25] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343
[26] Navascués M, Grosshans F and Acin A 2006 Phys. Rev. Lett. 97 190502
[27] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett 97 190503
[28] Lodewyck J, Bloch M, García-Patrón R, et al. 2007 Phys. Rev. A 76 042305
[29] Chen Z, Zhang Y, Wang G, Li Z and Guo H 2022 Phys. Rev. A 98 012314
[30] Sayat M, Shajilal B, Kish S P, et al. 2022 IEEE Trans. Commun. 98 012314
[31] Furrer F, Franz T, Berta M, et al. 2012 Phys. Rev. Lett. 109 100502
[32] Canetti R 2001 Proceedings 42nd IEEE Symposium on Foundations of Computer Science p. 136
[33] Jain N, Anisimova E, Khan I, et al. 2014 New J. Phys. 16 123030
[34] Stiller B, Khan I, Jain N, et al. 2015 Conference on Lasers and ElectroOptics p. 1
[35] Navarrete Á and Curty M 2022 Quantum Sci. Technol. 7 035021
[36] Pan Y, Zhang L and Huang D 2020 Appl. Sci. 10 7788
[37] Jouguet P, Kunz-Jacques S, Diamanti E, et al. 2012 Phys. Rev. A86 032309
[38] Lupo C 2020 Phys. Rev. A 102 022623
[39] Shannon C E 1948 The Bell System Technical Journal 27 379
[1] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[2] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[3] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[4] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[5] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[6] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[7] Effect of excess noise on continuous variable entanglement sudden death and Gaussian quantum discord
Su Xiao-Long (苏晓龙). Chin. Phys. B, 2013, 22(8): 080304.
[8] Continuous variable entanglement generation in coupled cavities
Pan Gui-Xia (潘桂侠), Xiao Rui-Jie (肖瑞杰), Zhou Ling (周玲). Chin. Phys. B, 2013, 22(1): 010307.
[9] Investigation of the influence of extra noises in seed beams on continuous-variable entanglement generation
Shang Ya-Na(商娅娜),Yan Zhi-Hui(闫智辉),Jia Xiao-Jun(贾晓军), Su Xiao-Long(苏晓龙),and Xie Chang-De(谢常德). Chin. Phys. B, 2011, 20(3): 034209.
[10] Security analysis of continuous-variable quantum key distribution scheme
Zhu Jun(朱俊), He Guang-Qiang(何广强), and Zeng Gui-Hua(曾贵华). Chin. Phys. B, 2007, 16(5): 1364-1369.
[11] Entanglement swapping of continuous variable using squeezed vacuum states
Yan Wei(闫伟) and Zhang Wei-Jun(张为俊). Chin. Phys. B, 2007, 16(10): 2885-2888.
[12] Deterministic quantum key distribution based on Gaussian-modulated EPR correlations
He Guang-Qiang (何广强), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2006, 15(6): 1284-1289.
[13] Continuous variable entanglement swapping in a thermal environment
Liu Jin-Ming (刘金明), Li Jian (李剑), Guo Guang-Can (郭光灿). Chin. Phys. B, 2002, 11(4): 339-345.
No Suggested Reading articles found!