|
|
Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme |
Huan-Yao Jiang(姜欢窈)1,†, Min Nie(聂敏)1, Guang Yang(杨光)1, Ai-Jing Sun(孙爱晶)1, Mei-Ling Zhang(张美玲)1, and Chang-Xing Pei(裴昌幸)2 |
1 School of Communications and Information Engineering & School of Artificial Intelligence, Xi'an University of Posts and Telecommunications, Xi'an 710121, China; 2 State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China |
|
|
Abstract In order to avoid the complexity of Gaussian modulation and the problem that the traditional point-to-point communication DM-CVQKD protocol cannot meet the demand for multi-user key sharing at the same time, we propose a multi-ring discrete modulation continuous variable quantum key sharing scheme (MR-DM-CVQSS). In this paper, we primarily compare single-ring and multi-ring M-symbol amplitude and phase-shift keying modulations. We analyze their asymptotic key rates against collective attacks and consider the security key rates under finite-size effects. Leveraging the characteristics of discrete modulation, we improve the quantum secret sharing scheme. Non-dealer participants only require simple phase shifters to complete quantum secret sharing. We also provide the general design of the MR-DM-CVQSS protocol. We conduct a comprehensive analysis of the improved protocol's performance, confirming that the enhancement through multi-ring M-PSK allows for longer-distance quantum key distribution. Additionally, it reduces the deployment complexity of the system, thereby increasing the practical value.
|
Received: 26 December 2023
Revised: 29 February 2024
Accepted manuscript online: 07 April 2024
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348 and 61201194). |
Corresponding Authors:
Huan-Yao Jiang
E-mail: 1134319164@qq.com
|
Cite this article:
Huan-Yao Jiang(姜欢窈), Min Nie(聂敏), Guang Yang(杨光), Ai-Jing Sun(孙爱晶), Mei-Ling Zhang(张美玲), and Chang-Xing Pei(裴昌幸) Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme 2024 Chin. Phys. B 33 070303
|
[1] Blakley G R 1979 Managing Requirements Knowledge, International Workshop on IEEE-CS p. 313 [2] Adi S 1979 Commun. ACM 22 612 [3] Hillery M, Buek V and Berthiaume 2002 Phys. Rev. A 59 1829 [4] Cleve R, Gottesman D and Lo H K 2002 Phys. Rev. Lett. 83 648 [5] Wootters W K and Zurek W H 1982 Nature 299 125012 [6] Bang J Y and Berger M S 2006 Phys. Rev. D 74 125012 [7] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photon. 12 1012 [8] Pirandola S, Ottaviani C, Spedalieri G, et al. 2015 Nat. Photonics 9 397 [9] Leverrier A and Grangier P 2011 Phys. Rev. A 83 042312 [10] Leverrier A, Grangier P 2009 Phys. Rev. Lett 102 180504 [11] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7 [12] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 [13] Denys A, Brown P and Leverrier A 2021 Quantum 5 540 [14] Leverrier A and Grangier P 2009 Phys. Rev. Lett. 102 180504 [15] Lau H K and Weedbrook C 2013 Phys. Rev. A 88 042313 [16] Ghorai S, Grangier P, Diamanti E, et al. 2019 Phys. Rev. X 9 021059 [17] Almeida M, Pereira D, Muga N J, et al. 2021 Opt. Express 29 38669 [18] Liao Q, Liu X, Ou Bo and Fu X 2023 IEEE Trans. Commun 71 6051 [19] Weedbrook C,Pirandola S, García-Patrón R, et al. 2012 Rev. Mod. Phys 84 621 [20] Djordjevic I 2019 IEEE Photonics Journal 11 1 [21] Becerra F E, Fan J, Baumgartner G, et al. 2013 Nat. Photonics 7 147 [22] Ding J Z 2022 Research on Improvement of Discrete Modulation Continuous Variable Quantum Key Distribution Scheme (Hunan: Central South University) (in Chinese) [23] Curty M, Lewenstein M and Lütkenhaus N 2004 Phys. Rev. Lett. 92 217903 [24] Grice W P and Qi B 2019 Phys. Rev. A 100 022339 [25] Leverrier A, Grosshans F and Grangier P 2010 Phys. Rev. A 81 062343 [26] Navascués M, Grosshans F and Acin A 2006 Phys. Rev. Lett. 97 190502 [27] García-Patrón R and Cerf N J 2006 Phys. Rev. Lett 97 190503 [28] Lodewyck J, Bloch M, García-Patrón R, et al. 2007 Phys. Rev. A 76 042305 [29] Chen Z, Zhang Y, Wang G, Li Z and Guo H 2022 Phys. Rev. A 98 012314 [30] Sayat M, Shajilal B, Kish S P, et al. 2022 IEEE Trans. Commun. 98 012314 [31] Furrer F, Franz T, Berta M, et al. 2012 Phys. Rev. Lett. 109 100502 [32] Canetti R 2001 Proceedings 42nd IEEE Symposium on Foundations of Computer Science p. 136 [33] Jain N, Anisimova E, Khan I, et al. 2014 New J. Phys. 16 123030 [34] Stiller B, Khan I, Jain N, et al. 2015 Conference on Lasers and ElectroOptics p. 1 [35] Navarrete Á and Curty M 2022 Quantum Sci. Technol. 7 035021 [36] Pan Y, Zhang L and Huang D 2020 Appl. Sci. 10 7788 [37] Jouguet P, Kunz-Jacques S, Diamanti E, et al. 2012 Phys. Rev. A86 032309 [38] Lupo C 2020 Phys. Rev. A 102 022623 [39] Shannon C E 1948 The Bell System Technical Journal 27 379 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|