|
|
Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states |
Yang Yu-Guang(杨宇光)a)†, Cao Wei-Feng(曹卫锋)c), and Wen Qiao-Yan(温巧燕)b) |
a College of Computer Science and Technology, Beijing University of Technology, Beijing 100124, China; b State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; c College of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China |
|
|
Abstract Based on $\chi $-type entangled states and the two-step protocol [Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317], a quantum secret sharing protocol of secure direct communication based on $\chi$-type entangled states $\vert \chi ^{00}\rangle _{3214} $ is proposed. Using some interesting entanglement properties of this state, the agent entirety can directly obtain the secret message from the message sender only if they collaborate together. The security of the scheme is also discussed.
|
Received: 14 July 2009
Revised: 04 November 2009
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National High-Tech Research and Development Program of China (Grant Nos.~2006AA01Z440, 2009AA012441 and 2009AA012437) and National Basic Research Program of China (Grant No.~2007CB311100), the National Natural Science Foundation of China (Grant Nos.~60873191 and 60821001), the Scientific Research Common Program of Beijing Municipal Commission of Education (Grant No.~KM200810005004), Beijing Natural Science Foundation (Grant Nos.~1093015 and 1102004), the ISN Open Foundation, Specialized Research Fund for the Doctoral Programm of Higher Education (Grant No.~20091103120014). |
Cite this article:
Yang Yu-Guang(杨宇光), Cao Wei-Feng(曹卫锋), and Wen Qiao-Yan(温巧燕) Three-party quantum secret sharing of secure direct communication based on $\chi$-type entangled states 2010 Chin. Phys. B 19 050306
|
[1] |
Bennett C H and Brassard G 1984 Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing (India: Bangalore) p175
|
[2] |
Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
|
[3] |
Bostr\"{oem K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[4] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[5] |
Zhang Z J, Man Z X and Li Y 2004 Phys. Lett. A 333 46
|
[6] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[7] |
Nguyen B A 2004 Phys. Lett. A 328 6
|
[8] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[9] |
Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501
|
[10] |
D eng F G and Long G L 2006 Commun. Theor. Phys. 46 443
|
[11] |
Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
|
[12] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 22
|
[13] |
Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
|
[14] |
Xia Y, Fu C B, Zhang S, Hong S K, Yeon K H and Um C I 2006 J. Korean Phys. Soc. 48 24
|
[15] |
Chen P, Deng F G and Long G L 2006 Chin. Phys. 15 2228
|
[16] |
Chen P, Li Y S, Deng F G and Long G L 2007 Commun.Theor. Phys. 47 49
|
[17] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[18] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[19] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
|
[20] |
Deng F G, Long G L and Zhou H Y 2005 Phys. Lett. A 340 43
|
[21] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 354 190
|
[22] |
Yang Y G and Wen Q Y 2007 Sci. Chin. G: Phys. Mech. Astron. 50 558
|
[23] |
Yang Y G, Wen Q Y and Zhu F C 2007 Chin. Phys. 16 1838
|
[24] |
Zhang Z J, Liu J, Wang D and Shi S 2007 Phys. Rev. A 75 026301
|
[25] |
Zhang Z J 2005 Phys. Lett. A 342 60
|
[26] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Lett. A 341 385
|
[27] |
Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[28] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[29] |
Zhang Z J 2005 Phys. Lett. A 342 60
|
[30] |
Zhang Z J and Man Z X 2005 Phys. Rev. A 72 022303
|
[31] |
Zhang Z J, Li Y and Man Z X 2005 Phys. Rev. A 71 044301
|
[32] |
Wang J, Zhang Q and Tang C J 2007 Commun. Theor. Phys. 47 454
|
[33] |
Han L F, Liu Y M, Liu J and Zhang Z J 2008 Opt. Commun. 281 2690
|
[34] |
Qin S J, Gao F, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 5472
|
[35] |
Wang T Y, Wen Q Y, Chen X B, Guo F Z and Zhu F C 2008 Opt. Commun. 281 6130
|
[36] |
Li B K, Yang Y G and Wen Q Y 2009 Chin. Phys. Lett. 26 010302
|
[37] |
Yang Y G and Wen Q Y 2008 Sci. Chin. G: Phys. Mech. Astron. 51 1308
|
[38] |
Yang Y G and Wen Q Y 2008 Chin. Phys. B 17 419
|
[39] |
Zhang Z J 2006 Opt. Commun. 261 199
|
[40] |
Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
|
[41] |
Bandyopadhyay S 2000 Phys. Rev. A 62 012308
|
[42] |
Hsu L Y 2003 Phys. Rev. A 68 022306
|
[43] |
Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
|
[44] |
Yang Y G and Wen Q Y 2009 Int. J. Quantum Inform. 7 1249
|
[45] |
Deng F G, Zhou H Y and Long G L 2005 Phys. Lett. A 337 329
|
[46] |
Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
|
[47] |
Zhang Z J, Yang J, Man Z X and Li Y 2005 Eur. Phys. J. { D 33 133
|
[48] |
Lance A M, Symul T, Bowen W P, Sanders B C, Tyc T, Ralph T C and Lam P K 2005 Phys. Rev. A 71 033814
|
[49] |
Li X H, Deng F G, Zhou H Y 2007 Chin. Phys. Lett. 24 1151
|
[50] |
Yang J and Liu J 2008 Commun. Theor. Phys. 49 338
|
[51] |
Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A: Math.Theor. 40 13121
|
[52] |
Zhan Y B 2007 Chin. Phys. 16 2557
|
[53] |
Ji H, Zhan X G and Zeng H S 2007 Chin. Phys. Lett. 24 2724
|
[54] |
Li X H and Deng F G 2008 Front. Comput. Sci. China 2 147
|
[55] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[56] |
Yeo Y and Chua W K 2006 Phys. Rev.Lett. 96 060502
|
[57] |
Wang X W and Yang G J 2008 Phys. Rev. A 78 024301
|
[58] |
Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
|
[59] |
D\"{Ur W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[60] |
Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
|
[61] |
Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
|
[62] |
Xiu X M, Dong H K, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 2457
|
[63] |
Cai Q Y 2006 Phys. Lett. A 351 23
|
[64] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[65] |
Qin S J, Gao F, Wen Q Y and Zhu F C 2006 Phys. Lett. A 357 101
|
[66] |
Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302.
|
[67] |
Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Quantum Inf. Comput. 7 329
|
[68] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|