Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070301    DOI: 10.1088/1674-1056/ad2f1f
GENERAL Prev   Next  

Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model

Geng-Biao Wei(韦庚彪), Liu Ye(叶柳)†, and Dong Wang(王栋)‡
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Abstract  We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions (QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry-André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.
Keywords:  quantum phase transition      entropic uncertainty      quantum entanglement      quantum steering  
Received:  17 January 2024      Revised:  09 February 2024      Accepted manuscript online:  01 March 2024
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  05.30.Rt (Quantum phase transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075001 and 12175001), Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701).
Corresponding Authors:  Liu Ye, Dong Wang     E-mail:  yeliu@ahu.edu.cn;dwang@ahu.edu.cn

Cite this article: 

Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋) Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model 2024 Chin. Phys. B 33 070301

[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133
[3] Das S S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144
[4] Das S S, He S and Xie X C 1990 Phys. Rev. B 41 5544
[5] Biddle J and Das S S 2010 Phys. Rev. Lett. 104 070601
[6] Biddle J, Priour Jr D J, Wang B and Das S S 2011 Phys. Rev. B 83 075105
[7] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University)
[8] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[9] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[10] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[11] Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112
[12] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305
[13] Tan K C 2020 Phys. Rev. A 102 022421
[14] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett. 110 135704
[15] Karrasch C and Schuricht D 2013 Phys. Rev. B 87 195104
[16] Canovi E, Werner P and Eckstein M 2014 Phys. Rev. Lett. 113 265702
[17] Andraschko F and Sirker J 2014 Phys. Rev. B 89 125120
[18] Marcuzzi M, Levi E, Diehl S, Garrahan J P and Lesanovsky I 2014 Phys. Rev. Lett. 113 210401
[19] Hickey J M, Genway S and Garrahan J P 2014 Phys. Rev. B 89 054301
[20] Heyl M 2014 Phys. Rev. Lett. 113 205701
[21] Heyl M 2015 Phys. Rev. Lett. 115 140602
[22] Schmitt M and Kehrein S 2015 Phys. Rev. B 92 075114
[23] Budich J C and Heyl M 2016 Phys. Rev. B 93 085416
[24] Heyl M, Pollmann F and Dóra B 2018 Phys. Rev. Lett. 121 016801
[25] Yang C, Wang Y, Wang P, Gao X and Chen S 2017 Phys. Rev. B 95 184201
[26] Mera B, Vlachou C, Paunković N, Vieira V R and Viyuela O 2018 Phys. Rev. B 97 094110
[27] Zvyagin A A 2016 Low Temp. Phys. 42 971
[28] Heyl M 2018 Rep. Progr. Phys. 81 054001
[29] Heisenberg W 1927 Z. Phys. 43 172
[30] Kennard E H 1927 Z. Phys. 44 326
[31] Robertson H P 1929 Phys. Rev. 34 163
[32] Deutsch D 1983 Phys. Rev. Lett. 50 631
[33] Kraus K 1987 Phys. Rev. D 35 3070
[34] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103
[35] Maccone L and Pati A K 2014 Phys. Rev. Lett. 113 260401
[36] Li J L and Qiao C F 2015 Sci. Rep. 5 12708
[37] Song Q C and Qiao C F 2016 Phys. Lett. A 380 2925
[38] Xiao Y, Jing N, Li-Jost X and Fei S M 2016 Sci. Rep. 6 23201
[39] Abbott A A, Alzieu P L, Hall M J W and Branciard C 2016 Mathematics 4 8
[40] Schwonnek R, Dammeier L and Werner R F 2017 Phys. Rev. Lett. 119 170404
[41] Song Q C, Li J L, Peng G X and Qiao C F 2017 Sci. Rep. 7 44764
[42] Wang D, Ming F, Hu M L and Ye L 2019 Ann. Phys. (Berlin) 531 1900124
[43] Hu M L and Fan H 2012 Phys. Rev. A 86 032338
[44] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[45] Renner R 2005 Security of Quantum Key Distribution Ph.D. thesis (ETH, Zurich)
[46] Bosyk G M, Portesi M, Holik F and Plastino A 2013 Phys. Scr. 87 065002
[47] Vaccaro J A 2011 Proc. R. Soc. A 468 105
[48] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[49] Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905
[50] Dupuis F, Fawzi O and Wehner S 2014 IEEE Trans. Inf. Theory 61 1093
[51] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[52] Wiesner S 1983 SIGACT News 15 78
[53] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[54] Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402
[55] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659
[56] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133
[57] Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977
[58] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206
[59] Xie B F, Ming F, Wang D, Ye L and Chen J L 2021 Phys. Rev. A 104 062204
[60] Song M L, Li L J, Song X K, Ye L and Wang D 2022 Phys. Rev. E 106 054107
[61] Wu L, Ye L and Wang D 2022 Phys. Rev. A 106 062219
[62] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[63] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[64] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555
[65] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446
[66] Zhou B Z, Yang C and Chen S 2019 Phys. Rev. B 100 184313
[67] Nielson M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[68] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[69] Wootters W K 1998 Phys. Rev. Lett 80 2245
[70] Paul B and Mukherjee K 2020 Phys. Rev. A 102 052209
[1] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[2] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[3] Quantum correlation enhanced bound of the information exclusion principle
Jun Zhang(张钧), Kan He(贺衎), Hao Zhang(张昊), and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(9): 090301.
[4] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[5] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[6] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[7] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[8] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[9] Genuine Einstein-Podolsky-Rosen steering of generalized three-qubit states via unsharp measurements
Yuyu Chen(陈玉玉), Fenzhuo Guo(郭奋卓), Shihui Wei(魏士慧), and Qiaoyan Wen(温巧燕). Chin. Phys. B, 2023, 32(4): 040309.
[10] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[11] Controlling stationary one-way steering in a three-level atomic ensemble
Jie Peng(彭洁), Jun Xu(徐俊), Hua-Zhong Liu(刘华忠), and Zhang-Li Lai(赖章丽). Chin. Phys. B, 2023, 32(12): 120305.
[12] Visualizing and witnessing first-order coherence, Bell nonlocality and purity by using a quantum steering ellipsoid in the non-inertial frame
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Ming-Ming Du(杜明明), Min Kong(孔敏), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(10): 100305.
[13] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[14] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[15] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
No Suggested Reading articles found!