|
|
Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model |
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳)†, and Dong Wang(王栋)‡ |
School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions (QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry-André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs.
|
Received: 17 January 2024
Revised: 09 February 2024
Accepted manuscript online: 01 March 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075001 and 12175001), Anhui Provincial Key Research and Development Plan (Grant No. 2022b13020004), and the Fund of CAS Key Laboratory of Quantum Information (Grant No. KQI201701). |
Corresponding Authors:
Liu Ye, Dong Wang
E-mail: yeliu@ahu.edu.cn;dwang@ahu.edu.cn
|
Cite this article:
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋) Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model 2024 Chin. Phys. B 33 070301
|
[1] Anderson P W 1958 Phys. Rev. 109 1492 [2] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133 [3] Das S S, He S and Xie X C 1988 Phys. Rev. Lett. 61 2144 [4] Das S S, He S and Xie X C 1990 Phys. Rev. B 41 5544 [5] Biddle J and Das S S 2010 Phys. Rev. Lett. 104 070601 [6] Biddle J, Priour Jr D J, Wang B and Das S S 2011 Phys. Rev. B 83 075105 [7] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University) [8] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [9] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604 [10] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702 [11] Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112 [12] Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305 [13] Tan K C 2020 Phys. Rev. A 102 022421 [14] Heyl M, Polkovnikov A and Kehrein S 2013 Phys. Rev. Lett. 110 135704 [15] Karrasch C and Schuricht D 2013 Phys. Rev. B 87 195104 [16] Canovi E, Werner P and Eckstein M 2014 Phys. Rev. Lett. 113 265702 [17] Andraschko F and Sirker J 2014 Phys. Rev. B 89 125120 [18] Marcuzzi M, Levi E, Diehl S, Garrahan J P and Lesanovsky I 2014 Phys. Rev. Lett. 113 210401 [19] Hickey J M, Genway S and Garrahan J P 2014 Phys. Rev. B 89 054301 [20] Heyl M 2014 Phys. Rev. Lett. 113 205701 [21] Heyl M 2015 Phys. Rev. Lett. 115 140602 [22] Schmitt M and Kehrein S 2015 Phys. Rev. B 92 075114 [23] Budich J C and Heyl M 2016 Phys. Rev. B 93 085416 [24] Heyl M, Pollmann F and Dóra B 2018 Phys. Rev. Lett. 121 016801 [25] Yang C, Wang Y, Wang P, Gao X and Chen S 2017 Phys. Rev. B 95 184201 [26] Mera B, Vlachou C, Paunković N, Vieira V R and Viyuela O 2018 Phys. Rev. B 97 094110 [27] Zvyagin A A 2016 Low Temp. Phys. 42 971 [28] Heyl M 2018 Rep. Progr. Phys. 81 054001 [29] Heisenberg W 1927 Z. Phys. 43 172 [30] Kennard E H 1927 Z. Phys. 44 326 [31] Robertson H P 1929 Phys. Rev. 34 163 [32] Deutsch D 1983 Phys. Rev. Lett. 50 631 [33] Kraus K 1987 Phys. Rev. D 35 3070 [34] Maassen H and Uffink J B M 1988 Phys. Rev. Lett. 60 1103 [35] Maccone L and Pati A K 2014 Phys. Rev. Lett. 113 260401 [36] Li J L and Qiao C F 2015 Sci. Rep. 5 12708 [37] Song Q C and Qiao C F 2016 Phys. Lett. A 380 2925 [38] Xiao Y, Jing N, Li-Jost X and Fei S M 2016 Sci. Rep. 6 23201 [39] Abbott A A, Alzieu P L, Hall M J W and Branciard C 2016 Mathematics 4 8 [40] Schwonnek R, Dammeier L and Werner R F 2017 Phys. Rev. Lett. 119 170404 [41] Song Q C, Li J L, Peng G X and Qiao C F 2017 Sci. Rep. 7 44764 [42] Wang D, Ming F, Hu M L and Ye L 2019 Ann. Phys. (Berlin) 531 1900124 [43] Hu M L and Fan H 2012 Phys. Rev. A 86 032338 [44] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [45] Renner R 2005 Security of Quantum Key Distribution Ph.D. thesis (ETH, Zurich) [46] Bosyk G M, Portesi M, Holik F and Plastino A 2013 Phys. Scr. 87 065002 [47] Vaccaro J A 2011 Proc. R. Soc. A 468 105 [48] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902 [49] Grosshans F and Cerf N J 2004 Phys. Rev. Lett. 92 047905 [50] Dupuis F, Fawzi O and Wehner S 2014 IEEE Trans. Inf. Theory 61 1093 [51] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [52] Wiesner S 1983 SIGACT News 15 78 [53] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [54] Renes J M and Boileau J C 2009 Phys. Rev. Lett. 103 020402 [55] Berta M, Christandl M, Colbeck R, Renes J M and Renner R 2010 Nat. Phys. 6 659 [56] Liu S, Mu L Z and Fan H 2015 Phys. Rev. A 91 042133 [57] Chen M N, Wang D and Ye L 2019 Phys. Lett. A 383 977 [58] Ming F, Wang D, Fan X G, Shi W N, Ye L and Chen J L 2020 Phys. Rev. A 102 012206 [59] Xie B F, Ming F, Wang D, Ye L and Chen J L 2021 Phys. Rev. A 104 062204 [60] Song M L, Li L J, Song X K, Ye L and Wang D 2022 Phys. Rev. E 106 054107 [61] Wu L, Ye L and Wang D 2022 Phys. Rev. A 106 062219 [62] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517 [63] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [64] Schrödinger E 1935 Proc. Cambridge Philos. Soc. 31 555 [65] Schrödinger E 1936 Proc. Cambridge Philos. Soc. 32 446 [66] Zhou B Z, Yang C and Chen S 2019 Phys. Rev. B 100 184313 [67] Nielson M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University) [68] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824 [69] Wootters W K 1998 Phys. Rev. Lett 80 2245 [70] Paul B and Mukherjee K 2020 Phys. Rev. A 102 052209 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|