Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 024208    DOI: 10.1088/1674-1056/27/2/024208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fabrication of mixed perovskite organic cation thin films via controllable cation exchange

Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀)
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China
Abstract  Here in this paper, we demonstrate a facile technique for creating the mixed formamidinium (HN=CHNH3+, FA+) and methylammonium (CH3NH3+, MA+) cations in the lead iodide perovskite. This technique entails a facile drop-casting of formamidinium iodide (FAI) solutions on as-prepared MAPbI3 perovskite thin films under the controlled conditions, which leads to controllable displacement of the MA+ cations by FA+ cations in the perovskite structure at room temperature. Uniform and controllable mixed organic cation perovskite thin films without a “bi-layered” or graded structure are achieved. By applying this approach to photovoltaic devices, we are able to improve the performances of devices through extending their optical-absorption onset further into the infrared region to enhance solar-light harvesting. Additionally, this work provides a simple and efficient technique to tune the structural, electrical, and optoelectronic properties of the light-harvesting materials for high-performance perovskite solar cells.
Keywords:  organic-inorganic perovskitesolar cell      morphology      cation exchange      drop-casting  
Received:  08 July 2017      Revised:  03 November 2017      Accepted manuscript online: 
PACS:  42.82.Gw (Other integrated-optical elements and systems)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  42.90.+m (Other topics in optics)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015QNA09).
Corresponding Authors:  Ying-Huai Qiang     E-mail:  yhqiang@cumt.edu.cn
About author:  42.82.Gw; 42.88.+h; 42.90.+m

Cite this article: 

Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀) Fabrication of mixed perovskite organic cation thin films via controllable cation exchange 2018 Chin. Phys. B 27 024208

[1] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[2] Zhou H, Shi Y, Dong Q, Zhang H and Xing Y 2014 J. Phys. Chem. Lett. 5 3241
[3] Xing G, Mathews N, Sun S, Lim S S and Lam Y M 2013 Science 342 344
[4] Stranks S D, Eperon G E, Grancini G, Menelaou C and Alcocer M J 2013 Science 342 341
[5] Yao X, Ding Y L, Zhang X D and Zhao Y 2015 Acta Phys. Sin. 64 38805(in Chinese)
[6] Chai L and Zhong M 2016 Acta Phys. Sin. 65 237902(in Chinese)
[7] Woon S Y, Jun H N, Nam J J, Young C K, Seungchan R, Jangwon S and Sang S 2015 Sci. Rep. 10 1126
[8] Yan W, Rao H, Wei C, Liu Z and Bian Z 2017 Nano Energy 35 62
[9] Jian Q, Chandran H T, Cheng Y H, Tsang S W and Lo M F 2016 Org. Electron. 38 144
[10] Zhou Y, Yang M, Pang S, Zhu K and Padture N P 2016 J. Am. Chem. Soc. 138 5535
[11] Zhou Z, Pang S, Ji F, Zhang B and Cui G 2016 Chem. Commun. 52 3828
[12] Pellet N, Teuscher J, Maier J, Grätzel M 2015 Chem. Mater. 27 2181
[13] Eperon G E, Beck C E and Snaith H J 2015 Materials Horizons 3 63
[14] Chuang C L, Chen C Y, Chiang C H and Wu C G 2017 Inorganic Chemistry Frontiers
[15] Jian Q, Chandran H T, Cheng Y H, Tsang S W and Lo M F 2016 Org. Electron. 38 144
[16] He X, Guo P F, Wu J H, Tu Y G and Lan Z 2017 Solar Energy 157 853
[17] Zhao B G, Zhu L, Zhao Y L, Yang Y and Song J 2016 J. Mater. Sci. Mater. Electron. 27 10869
[18] Ji F, Wang L, Pang S, Gao P and Xu H 2016 J. Mater. Chem. A 4 14437
[19] Lee J, Seol D, Cho A and Park N 2014 Adv. Mater. 26 4991
[20] Slimi B, Mollar M, Assaker B I, Kriaa I, Chtourou R and Mari B 2016 Energy Procedia 102 87
[21] Chuang C L, Chen C Y, Chiang C H and Wu C G 2017 Inorg. Chem. Frontiers 4 850
[22] Stoumpos C C, Malliakas C D and Kanatzidis M G 2013 Inorg. Chem. 52 9019
[23] Yang Z, Chueh C C, Liang P W, Crump M and Lin F 2016 Nano Energy 22 328
[24] Yang H, Zhu J, Yong D, Chen S and Zhang C 2016 Acs Appl. Mater. Interfaces 8 8162
[25] Kim H S and Park N G 2014 J. Phys. Chem. Lett. 5 2927
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[4] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[5] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[6] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[7] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[8] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[9] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[10] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[11] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[12] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[13] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[14] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[15] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
No Suggested Reading articles found!