ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Electromagnetic pulses produced by a picosecond laser interacting with solid targets |
Ai-Hui Niu(牛爱慧)1,†, Ning Kang(康宁)2,3,†,‡, Guo-Xiao Xu(许国潇)2,4, Jia-Jie Xie(谢佳节)1, Jian Teng(滕建)5, Hui-Ya Liu(刘会亚)2,3, Ming-Ying Sun(孙明营)2,3, and Ting-Shuai Li(李廷帅)1,§ |
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Key Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 3 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China; 5 Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract A high-power laser ablating solid targets induces giant electromagnetic pulses (EMPs), which are intimately pertinent to laser parameters, such as energy and pulse width. In this study, we reveal the features of EMPs generated from a picosecond (ps) laser irradiating solid targets at the SG-II picosecond petawatt (PSPW) laser facility. The laser energy and pulse, as well as target material and thickness, show determinative effects on the EMPs' amplitude. More intense EMPs are detected behind targets compared to those at the other three positions, and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10 μm to 20 μm, which is suppressed when the laser pulse width is enlarged. The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures.
|
Received: 01 December 2023
Revised: 29 December 2023
Accepted manuscript online: 04 January 2024
|
PACS:
|
52.40.Db
|
(Electromagnetic (nonlaser) radiation interactions with plasma)
|
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25020205) and the program of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (Grant No. 6142A04220108). |
Corresponding Authors:
Ning Kang, Ting-Shuai Li
E-mail: kangning@siom.ac.cn;litingshuai@uestc.edu.cn
|
Cite this article:
Ai-Hui Niu(牛爱慧), Ning Kang(康宁), Guo-Xiao Xu(许国潇), Jia-Jie Xie(谢佳节), Jian Teng(滕建), Hui-Ya Liu(刘会亚), Ming-Ying Sun(孙明营), and Ting-Shuai Li(李廷帅) Electromagnetic pulses produced by a picosecond laser interacting with solid targets 2024 Chin. Phys. B 33 054205
|
[1] Marco M D, Krása J, Cikhardt J, Velyhan A, Pfeifer M, Dudžák R, Dostál J, Krousk ý E, Limpouch J, Pisarczyk T, Kalinowska Z, Chodukowski T, Ullschmied J, Giuffrida L, Chatain D, Perin J P and Margarone D 2017 Phys. Plasmas 24 083103 [2] Consoli F, Tikhonchuk V T, Bardon M, Bradford P, Carroll D C, Cikhardt J, Cipriani M, Clarke R J, Cowan T E, Danson C N, Angelis R D, Marco M D, Dubois J L, Etchessahar B, Garcia A L, Hillier D L, Honsa A, Jiang W M, Kmetik V, Krasa J, Li Y T, Lubrano F, McKenna P, Metzkes-Ng J, Poyé A, Prencipe I, Raczka P, Smith R A, Vrana R, Woolsey N C, Zemaityte E, Zhang Y H, Zhang Z, Zielbauer B and Neely D 2020 High Power Laser Sci. 8 e22 [3] Xia Y D, Zhang F, Cai H B, Zhou W M, Tian C, Zhang B, Liu D X, Yi T, Xu Y L, Wang F, Li T S and Zhu S P 2020 Matter Radiat. Extremes 5 017401 [4] Brown C G, Clancy T J, Eder D C, Ferguson W and Throop A L 2013 The European physical Journal Conferences 59 08012 [5] Rączka P, Cikhardt J, Pfeifer M, Krasa J, Krupka M, Burian T, Krus M, Pisarczyk T, Dostal J and Dudžák R and Badziak J 2021 Plasma Phys. Contr. F. 63 085015 [6] Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P, Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R, Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y, McKenna P and Neely D 2018 High Power Laser Sci. 6 e21 [7] He Q Y, Deng Z G, Meng L B, Zhang Z M, Cui B, Qi W, Yang L, Liu H J, Fan W, Wang C K, Yi T, Gu Y, Lin C, Consoli F, Zhou W M and Li T S 2022 Nucl. Fusion 62 066006 [8] He Q Y, Kang N, Ren L, Tian C, Wang C K, Zhang Z M, Liu D X, Yang L, Liu H Y, Sun M Y, Zhu B Q, Zhou W M and Li T S 2021 Plasma Sci. Technol 23 115202 [9] Duchateau G, Yamada A and Yabana K 2022 Phys. Rev B 105 165128 [10] Kugland N L, Aurand B, Brown C G, Constantin C G, Everson E T, Glenzer S H, Schaeffer D B, Tauschwitz A and Niemann C 2012 Appl. Phys. Lett. 101 024102 [11] Yang Y, Guo X D, Li Z H, He Q Y, Xiong G, Li H, Yu B, Wang C K, Yang J M, Yi T, Wang F and Li T S 2022 IEEE T. Nucl. Sci. 69 2027 [12] Dubois J L, Lubrano-Lavaderci F, Raffestin D, Ribolzi J, Gazave J, Fontaine A C L, D’Humierès E, Hulin S, Nicolaï P, Poyé A and Tikhonchuk V T 2014 Phys. Rev E 89 013102 [13] Xia Y D, Zhang F, Cai H B, Zhou W M, Tian C, Zhang B, Liu D X, Yi T, Xu Y L, Wang F, Li T S and Zhu S P 2017 Matter Radiat. Extrem. 5 017401 [14] Minenna D F G, Poyé A, Bradford P, Woolsey N and Tikhonchuk V T 2020 Phys. Plasmas 27 063102 [15] Qi R, Zhou C L, Zhang D D, Song L W, Yang X J, Gui J Y, Leng Y X, Tian Y and Li R X 2022 Appl. Sci 12 6059 [16] Side D D, Caricato A P, Krása J and Nassisi V 2018 Appl. Phys. AMater 124 138 [17] Consoli F, Angelis R D, Robinson T S, Glitrap S, Hicks G S, Ditter E J, Ettlinger O C, Najmudin Z, Notley M and Smith R A 2019 Sci. Rep. 9 8551 [18] Xu Y L, Li D Y, Xia Y D, Zhang S Y, Wu M J, Yang T, Zhu J G, Cheng H, Wang C K, Lin C, Li T S and Yang X Q 2022 Chin. Phys. B 31 025205 [19] Yang Y M, Yi T, Yang M, Wang C K and Li T S 2018 Laser Phys. 29 016003 [20] Liao Q, Wu M J, Gong Z, Geng Y X, Xu X H, Li D Y, Shou Y R, Zhu J G, Li C C, Yang M, Li T S, Lu H Y, Ma W J, Zhao Y Y, Lin C and Yan X Q 2018 Phys. Plasmas 25 063109 [21] Poyé A, Hulin S, Bailly-Grandvaux M, Dubois J L, Ribolzi J, Raffestin D, Bardon M, Lubrano-Lavaderci F, D’Humieres E, Santos J J, Nicola ï P and Tikhonchuk V 2015 Phys. Rev E 91 043106 [22] Geng Y X, Wu D, Yu W, Sheng Z M, Fritzsche S, Liao Q, Wu M J, Xu X H, Li D Y, Ma W J, Lu H Y, Zhao Y Y, He X T, Chen J E, Lin C and Yan X Q 2020 Matter Radiat. Extrem 5 064402 [23] Li S P, Wang X C, Chen G J and Wang Z K 2023 Micromachines-Basel 14 119 [24] Kuri D, Nilakshi D and Kartik P 2017 Appl. Phys. B 123 201 [25] Delion D S and Dumitrescu A 2021 Phys. Rev. C 103 054325 [26] Budaca R and Budac A I 2017 Eur. Phys. J. A 53 160 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|