Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 054203    DOI: 10.1088/1674-1056/ad2a6f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Extending microwave-frequency electric-field detection through single transmission peak method

Qing Liu(刘青)1,2, Jin-Zhan Chen(陈进湛)2, He Wang(王赫)2, Jie Zhang(张杰)2, Wei-Min Ruan(阮伟民)2, Guo-Zhu Wu(伍国柱)2, Shun-Yuan Zheng(郑顺元)2, Jing-Ting Luo(罗景庭)1, and Zhen-Fei Song(宋振飞)2,3,†
1. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
2. Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen 518107, China;
3. Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
Abstract  The strength of microwave (MW) electric field can be observed with high precision by using the standard electromagnetically induced transparency and Aulter-Towns (EIT-AT) technique, when its frequency is resonant or nearly-resonant with the Rydberg transition frequency. As the detuning of MW field increases, one of the transmission peaks (single peak) is easier to measure due to its increased amplitude. It can be found that the central symmetry point of the two transmission peaks $f_{1/2 }$ is only related to the detuning of MW field $\varDelta_{\rm MW} $ and central symmetry point $f_{0 }$ of resonant MW field, satisfying the relation $f_{1/2} ={\varDelta_{\rm MW} }/{2}+f_{0} $. Thus, we demonstrate a single transmission peak method that the MW E-field can be determined by interval between the position of single peak and $f_{1/2}$. We use this method to measure continuous frequencies in a band from $-200$~MHz to 200~MHz of the MW field. The experimental results and theoretical analysis are presented to describe the effectiveness of this method. For 50~MHz\,$< \varDelta_{\rm MW}< 200$~MHz, this method solves the problem that the AT splitting cannot be measured by using the standard EIT-AT techniques or multiple atomic-level Rydberg atom schemes.
Keywords:  microwave electric field      Rydberg atom      electromagnetically induced transparency (EIT)      Aulter-Towns splitting  
Received:  09 December 2023      Revised:  31 January 2024      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Ee (Rydberg states)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFF0603704) and the National Natural Science Foundation of China (Grant No. 62071443).
Corresponding Authors:  Zhen-Fei Song,E-mail:songzf@nim.ac.cn     E-mail:  songzf@nim.ac.cn

Cite this article: 

Qing Liu(刘青), Jin-Zhan Chen(陈进湛), He Wang(王赫), Jie Zhang(张杰), Wei-Min Ruan(阮伟民), Guo-Zhu Wu(伍国柱), Shun-Yuan Zheng(郑顺元), Jing-Ting Luo(罗景庭), and Zhen-Fei Song(宋振飞) Extending microwave-frequency electric-field detection through single transmission peak method 2024 Chin. Phys. B 33 054203

[1] Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp. 1–9
[2] Bao S, Yang W, Zhang H, Zhang L, Zhao J and Jia S 2015 J. Phys. Soc. Jpn. 84 104301
[3] Sedlacek J A, Schwettmann A, Kubler H, Löw R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[4] Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A and Raithel G 2016 Appl. Phys. Lett. 108 174101
[5] Simons M T, Gordon J A and Holloway C L 2016 J. Appl. Phys. 120 123103
[6] Simons M T, Artusio-Glimpse A B, Robinson A K, Prajapati N and Holloway C L 2021 Measurement: Sensors 18 100273
[7] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[8] Song Z, Zhang W, Wu Q, Mu H, Liu X, Zhang L and Qu J 2018 Sensors 18 3205
[9] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106
[10] Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F and Zhong Z P 2021 Phys. Rev. A 103 063113
[11] Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[12] Cui Y, Jia F D, Hao J H, Wang Y H, Zhou F, Liu X B, Yu Y H, Mei J, Bai J H, Bao Y Y, Hu D, Wang Y, Liu Y, Zhang J, Xie F and Zhong Z P 2023 Phys. Rev. A 107 043102
[13] Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L and Jia S 2020 Nat. Phys. 16 911
[14] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[15] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432
[16] Kumar S, Fan H, Kübler H, Sheng J and Shaffer J P 2017 Sci. Rep. 7 42981
[17] Zhou F, Jia F D, Liu X B, Zhang J, Xie F and Zhong Z P 2023 Acta Phys. Sin. 72 045204 (in Chinese)
[18] Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027
[19] Fan H Q, Kümar S, Daschner R, Kubler H and Shaffer J P 2014 Opt. Lett. 39 3030
[20] Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J and Qu J 2019 Opt. Express 27 8848
[21] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
[22] Holloway C, Simons M, Haddab A H, Gordon J A, Anderson D A, Raithel G and Voran S 2021 IEEE Antennas Propag. Mag. 63 63
[23] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108
[24] Deb A B and Kjærgaard N 2018 Appl. Phys. Lett. 112 211106
[25] Sedlacek J A, Schwettmann A, Kübler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[26] Simons M T, Artusio-Glimpse A B, Holloway C L, Imhof E, Jefferts S R, Wyllie R, Sawyer B C and Walker T G 2021 Phys. Rev. A 104 032824
[27] Liu X H, Liao K Y, Zhang Z X, Tu H T, Bian W, Li Z Q, Zheng S Y, Li H H, Huang W, Yan H and Zhu S L 2022 Phys. Rev. Appl. 18 054003
[28] Calero V, Fernández-Mateo R, Morgan H, García-Sánchez P and Ramos A 2021 Phys. Rev. Appl. 15 014047
[29] Bao S, Zhang H, Zhou J, Zhang L, Zhao J, Xiao L and Jia S 2016 Phys. Rev. A 94 043822
[30] Kwak H M, Jeong T, Lee Y S and Moon H S 2016 Opt. Commun. 380 168
[31] Thaicharoen N, Moore K R, Anderson D A, Powel R C, Peterson E and Raithel G 2019 Phys. Rev. A 100 054003
[32] Steck D A 2013 Rubidium 87D Line Data available online:https://steck.us/alkalidata
[33] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[34] Ibali N, Pritchard J D, Adams C S and Weatherill K J 2017 Comput. Phys. Commun. 220 319
[35] Liu J, Shi T and Chen Y 2021 J. Lightwave Technol. 39 2023
[36] Dai Z J, Chen X, Wang P, Zhang J and Liang H J 2023 Journal of China Academy of Electronics and Information Technology 18 455 (in Chinese)
[37] Zhang X Y, Liang T and An K 2023 J. Microwaves 39 7 (in Chinese)
[38] Zhang S T 2013 The Research of Microwave Frequency Based on Photonics Methods (Dalian University of Technology) (in Chinese)
[1] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[2] Superradiance of ultracold cesium Rydberg |65D5/2>→|66P3/2>
Liping Hao(郝丽萍), Xiaoxuan Han(韩小萱), Suying Bai(白素英), Xiufen You(游秀芬), Yuechun Jiao(焦月春), and Jianming Zhao(赵建明). Chin. Phys. B, 2024, 33(5): 054204.
[3] Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
Bo Wu(武博), Jiawei Yao(姚佳伟), Fengchuan Wu(吴逢川), Qiang An(安强), and Yunqi Fu(付云起). Chin. Phys. B, 2024, 33(2): 024205.
[4] Facilitation of controllable excitation in Rydberg atomic ensembles
Han Wang(王涵) and Jing Qian(钱静). Chin. Phys. B, 2023, 32(8): 083302.
[5] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[6] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍),Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[7] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[8] Electric field intensity measurement by using doublet electromagnetically induced transparency of cold Rb Rydberg atoms
Ting Gong(宫廷), Shuai Shi(师帅), Zhonghua Ji(姬中华), Guqing Guo(郭古青), Xiaocong Sun(孙小聪), Yali Tian(田亚莉), Xuanbing Qiu(邱选兵), Chuanliang Li(李传亮), Yanting Zhao(赵延霆), and Suotang Jia(贾锁堂). Chin. Phys. B, 2023, 32(10): 103202.
[9] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[10] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[11] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[12] High-precision three-dimensional Rydberg atom localization in a four-level atomic system
Hengfei Zhang(张恒飞), Jinpeng Yuan(元晋鹏), Lirong Wang(汪丽蓉), Liantuan Xiao(肖连团), and Suo-tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(5): 053202.
[13] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[14] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[15] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
No Suggested Reading articles found!