ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Tunable dual-band terahertz graphene absorber with guided mode resonances |
Jun Wu(吴俊)1,2,†, Xia-Yin Liu(刘夏吟)1, and Zhe Huang(黄喆)1 |
1 Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China; 2 College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China |
|
|
Abstract A tunable dual-band terahertz absorber is designed and investigated. The unit cell of the proposed absorber consists of a graphene monolayer on a guided-mode resonant filter. The graphene absorber presents >40% absorption at two resonance frequencies, which is attributed to the guided mode resonances with different mode numbers. The electric field intensity distribution is analyzed to disclose the physical mechanism of such a dual-band absorption effect. Furthermore, the influence of optical properties of graphene, including Fermi level and relaxation time, on the absorption spectra are investigated. Finally, the influence of geometric parameters on the absorption spectrum is studied, which will provide useful guidance for the fabrication of this absorber. We believe that the results may be useful for developing the next-generation graphene-based optoelectronic devices.
|
Received: 26 June 2020
Revised: 30 July 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
42.79.Dj
|
(Gratings)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
81.05.ue
|
(Graphene)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61405217), the Zhejiang Provincial Natural Science Foundation, China (Grant No. LY20F050001), the Anhui Polytechnic University Research Startup Foundation, China (Grant No. 2020YQQ042), and the Pre-research Project of Natural Science Foundation of Anhui Polytechnic University, China (Grant No. Xjky2020021). |
Corresponding Authors:
†Corresponding author. E-mail: mailswj2011@163.com
|
Cite this article:
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆) Tunable dual-band terahertz graphene absorber with guided mode resonances 2021 Chin. Phys. B 30 014202
|
1 Williams G P 2006 Rep. Prog. Phys. 69 301 2 Tonouchi M 2007 Nat. Photon. 1 97 3 Jepsen P U, Cooke D G and Koch M 2011 Laser Photon. Rev. 5 124 4 Wang J, Gou J and Li W2014 Aip Adv. 4 97 5 Diem M, Koschny T and Soukoulis C M 2008 Phys. Rev. B 79 033101 6 Yahiaoui R, Tan S Y, Cong L Q, Singh R J, Yan F P and Zhang W L 2015 J. Appl. Phys. 118 083103 7 Savo S, Shrekenhamer D and Padilla W J 2014 Adv. Opt. Mater. 2 275 8 Shi H, Ok J G, Baac H W and Guo L J 2011 Appl. Phys. Lett. 99 211103 9 Ma Y, Chen Q, Grant James, Saha S C, Khalid Ata and Cumming D R S 2011 Opt. Lett. 36 945 10 Yahiaoui R, Guillet J P, De M F and Mounaix P 2013 Opt. Lett. 38 4988 11 Wen Y Z, Ma W, Bailey J, Matmon G, Yu X M and Aeppli G 2014 Opt. Lett. 39 1589 12 Li H, Qi L, Zhang X and Wei Z 2017 Opt. Mater. Express 7 3294 13 Wang L, Ge S J, Hu W, Nakajima M,Lu Y Q 2017 Opt. Express 25 23873 14 Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 15 Grigorenko A N, Polini M and Novoselov K S 2012 Nat. Photon. 6 749 16 Bao Q and Loh K P 2012 ACS Nano 6 3677 17 Koppens F H L, Chang D E and De Abajo F J G 2011 Nano Lett. 11 3370 18 Mark K F, Sfeir M Y, Wu Y, Lui C H, Misewich J A and Heinz T F 2008 Phys. Rev. Lett. 101 196405 19 Fan C Z, Tian Y C, Ren P W and Jia W 2019 Chin. Phys. B 28 076105 20 Thongrattanasiri S, Koppens F H L and De Abajo F J G 2012 Phys. Rev. Lett. 108 047401 21 Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017 22 Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F and Zhang X 2011 Nature 474 64 23 Wei W, Nong J, Tang L, Zhang G, Jiang X and Zhu Y 2015 Chin. Opt. Lett. 32 082801 24 Xia F N, Mueller T, Lin Y M, Valdes-Garcia A and Avouris P 2009 Nat. Nanotechnol. 4 839 25 Midrio M, Galli P, Romagnoli M, Kimerling L C and Michel J 2014 Photon. Res. 2 A34 26 Xiao T H, Gan L and Li Z Y 2015 Photon. Res. 3 300 27 Piper J R and Fan S 2014 ACS Photon. 1 347 28 Grande M, Vincenti M A, Stomeo T, Bianco G, De Ceglia D, Akozbek N, Petruzzelli V, Bruno G, De Vittorio M, Scalora M and Dorazio A 2015 Opt. Express 23 21032 29 Gao W L, Shu J, Qiu C Y and Xu Q F 2012 ACS Nano 6 7806 30 Kashif M F, Bianco G, Tiziana S, Vincenti M A, De Ceglia D, De Vittorio M, Michael S, Giovanni B, Dorazio A and Grande M 2019 Appl. Sci. 9 2528 31 Zhang M and Zhang X 2015 Sci. Rep. 5 8266 32 Moharam M G, Grann E B, Pommet D A and Gaylord T K 1995 J. Opt. Soc. Am. A 12 1068 33 Lalanne P and Morris G M 1996 J. Opt. Soc. Am. A 13 779 34 Gusynin V P, Sharapov S G and Carbotte J P 2006 Phys. Rev. Lett. 96 256802 35 Gan C H, Chu H S and Li E P 2012 Phys. Rev. B 85 125431 36 Hao J Zhou L and Qiu M 2011 Phys. Rev. B 83 165107 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|