Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048103    DOI: 10.1088/1674-1056/ad188d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Pre-existing orthorhombic embryos-induced hexagonal—orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy

Ting-Ting Zhang(张婷婷), Yuan-Yuan Gong(龚元元), Zi-Qian Lu(鲁子骞), and Feng Xu(徐锋)
MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The thermal—elastic martensitic transformation from high-temperature Ni$_{2}$In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in Mn$MX$ ($M={\rm Ni}$ or Co, and $X={\rm Ge}$ or Si) alloys. However, the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear. In this work, the hexagonal—orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated. One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature ($M_{\rm s}$). With the the sample cooing to $M_{\rm s}$, the laths turn broader, indicating that the martensitic transformation starts from these pre-existing orthorhombic laths. Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal—orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the pre-existing orthorhombic laths. The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent. Therefore, the orthorhombic martensite can take these pre-existing laths as embryos and grow up. This work implies that the martensitic transformation in MnNiSi$_{1-x}$(CoNiGe)$_{x}$ alloy is initiated by orthorhombic embryos.
Keywords:  martensitic transformation      MnMX alloy      orthorhombic embryo      crystallography relationship  
Received:  18 September 2023      Revised:  17 December 2023      Accepted manuscript online:  25 December 2023
PACS:  81.30.Kf (Martensitic transformations)  
  81.05.Bx (Metals, semimetals, and alloys)  
  68.55.A- (Nucleation and growth)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974184).
Corresponding Authors:  Feng Xu     E-mail:  xufeng@njust.edu.cn

Cite this article: 

Ting-Ting Zhang(张婷婷), Yuan-Yuan Gong(龚元元), Zi-Qian Lu(鲁子骞), and Feng Xu(徐锋) Pre-existing orthorhombic embryos-induced hexagonal—orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy 2024 Chin. Phys. B 33 048103

[1] Kireeva I V, Chumlyakov Y I, Vyrodova A V, Pobedennaya Z V and Marchenko E S 2022 Mater. Lett. 324 132817
[2] Lu H Z, Liu L H, Yang C, Luo X, Song C H, Wang Z, Wang J, Su Y D, Ding Y F, Zhang L C and Li Y Y 2022 J. Mater. Sci. Technol. 101 205
[3] Turabi A S, Karaca H E, Tobe H, Basaran B, Aydogdu Y and Chumlyakov Y I 2016 Scripta Mater. 111 110
[4] Cong D Y, Xiong W X, Planes A, Ren Y, Mañosa L, Cao P Y, Nie Z H, Sun X M, Yang Z, Hong X F and Wang Y D 2019 Phys. Rev. Lett. 122 255703
[5] Niu Y R, Chen H Y, Zhang X Y, Li S W, Cong D Y, Ma T Y, Li S L, Lin J P and Wang Y D 2021 Scripta Mater. 204 114123
[6] Xue D Q, Yuan R H, Yang Y C, Pang J B, Zhou Y M, Ding X D, Lookman T, Ren X B, Sun J and Xue D Z 2022 J. Mater. Sci. Technol. 103 8
[7] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nat. Mater. 4 450
[8] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620
[9] Yang Q, Wang S L, Chen J, Zhou T N, Peng H B and Wen Y H 2016 Acta Mater. 111 348
[10] Zárubová N, Gemperlová J, Gemperle A, Dlabáček Z, vSittner P and Novák V 2010 Acta Mater. 58 5109
[11] Liu C, Zhao Y P and Yu T 2005 Mater. Design 26 465
[12] Sarawate N and Dapino M 2006 Appl. Phys. Lett. 88 121923
[13] Karaman I, Basaran B, Karaca H E, Karsilayan A I and Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505
[14] Li C, Gong Y Y, Wang Y, Xu G Z, Chu R X, Wang Y J and Xu F 2020 ACS Appl. Electron. Mater. 2 1048
[15] Zhou H, Wang D K, Li Z, Cong J Z, Yu Z, Zhao S, Jiang P, Cong D Y, Zheng X Q, Qiao K M and Zhang H 2022 J. Mater. Sci. Technol. 114 73
[16] Shen F R, Zhou H B, Hu F X, Wang J T, Wu H, Huang Q Z, Hao J Z, Yu Z B, Gao Y H, Lin Y X, Wang Y, Zhang C, Yin Z, Wang J, Deng S, Chen J, He L H, Liang T J, Sun J R, Zhao T Y and Shen B G 2021 J. Am. Chem. Soc. 143 6798
[17] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H and Zhang X X 2015 Adv. Electron. Mater. 1 1500076
[18] Anzai S and Ozawa K 1978 Phys. Rev. B 18 2173
[19] Aznar A, Lloveras P, Kim J, Stern-Taulats E, Barrio M, Tamarit J L, Sánchez-Valdés C F, Sánchez Llamazares J L, Mathur N D and Moya X 2019 Adv. Mater. 31 1903577
[20] Biswas A, Pathak A K, Zarkevich N A, Liu X, Mudryk Y, Balema V, Johnson D D and Pecharsky V K 2019 Acta Mater. 180 341
[21] Dutta P, Pramanick S, Singh V, Major D T, Das D and Chatterjee S 2016 Phys. Rev. B 93 134408
[22] Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G and Wu G H 2019 Acta Mater. 174 289
[23] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F 2012 Nat. Commun. 3 873
[24] Liu J, Gong Y Y, You Y R, You X M, Huang B W, Miao X F, Xu G Z, Xu F and Brück E 2019 Acta Mater. 174 450
[25] Zhao Y Y, Hu F X, Bao L F, Wang J, Wu H, Huang Q Z, Wu R R, Liu Y, Shen F R, Kuang H, Zhang M, Zuo W L, Zheng X Q, Sun J R and Shen B G 2015 J. Am. Chem. Soc. 137 1746
[26] Gong Y Y, Wang D H, Cao Q Q, Du Y W, Zhi T, Zhao B C, Dai J M, Sun Y P, Zhou H B, Lu Q Y and Liu J 2015 Acta Mater. 98 113
[27] Liu J, Gong Y Y, Zhang F Q, You Y R, Xu G Z, Miao X F and Xu F 2021 J. Mater. Sci. Technol. 76 104
[28] Staunton J B, dos Santos Dias M, Peace J, Gercsi Z and Sandeman K G 2013 Phys. Rev. B 87 060404
[29] Zhang C L, Wang D H, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 Appl. Phys. Lett. 103 132411
[30] Chen J H, Poudel Chhetri T, Us Saleheen A, Young D P, Dubenko I, Ali N and Stadler S 2019 Intermetallics 112 106547
[31] Kasimov D, Liu J, Gong Y Y, Xu G G, Xu F and Lu G W 2018 J. Alloys Compd. 733 15
[32] Xiao Y N, Zhang H, Zhang Y L, Long K, W Xing C F, Liu Y W and Long Y 2018 J. Alloys Compd. 769 916
[33] Dutta P, Das D, Chatterjee S, Pramanick S and Majumdar S 2016 J. Phys. D:Appl. Phys. 49 125001
[34] Liu E K, Du Y, Chen J L, Wang W H, Zhang H W and Wu G H 2011 IEEE Trans. Magn. 47 4041
[35] Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. 43 8036
[36] Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W and Long Y 2017 Mater. Design 114 531
[37] Bowles J S and Mackenzie J K 1954 Acta Metallurgica 2 129
[38] Olson G B and Cohen M 1982 Theory of Martensitic Nucleation:A current Assessment (New York:Metallurgical Soc. of AIME) pp. 1145——1164
[39] Cech R E and Turnbull D 1956 JOM 8 124
[40] Greninger A B and Mooradian V G 1938 Aime. Trans. 128 337
[41] Allibert C, Bernard C, Effenberg G, Nüssler H D and Spencer P J 1981 Calphad. 5 227
[42] Magee C L 1971 Metallurgical Transactions 2 2419
[43] Easterling K E and Miekk-Oja H M 1967 Acta Metallurgica 15 1133
[44] Easterling K E and Swann P R 1971 Acta Metallurgica 19 117
[45] Lecroisey F and Pineau A 1972 Metall Mater. Trans. B 3 391
[46] Werner M and Seeger A 1989 Strength of Metals and Alloys (ICSMA 8), August 22——26, 1988, Tampere, Finland, pp. 173——178
[47] Li B, Zhang X M, Clapp P C and Rifkin J A 2004 J. Appl. Phys. 95 1698
[48] Reid A C E and Olson G B 2001 Mater. Sci. Eng. A 309 370
[49] Saburi T, Komatsu T, Nenno S and Watanabe Y 1986 J. Less-Common Met. 118 217
[50] Fukuda T, Saburi T, Doi K and Nenno S 1992 Mater. Tran. Jim. 33 271
[51] Ibarra A, Caillard D, San Juan J and Nó M L 2007 Appl. Phys. Lett. 90 101907
[52] Clapp C 1973 Phys. Stat. Sol. (b) 57 561
[53] Knapp H and Dehlinger U 1956 Acta Metallurgica 4 289
[54] Chulist R, Straka L, Sozinov A, Tokarski T and Skrotzki W 2017 Acta Mater. 128 113
[55] Zhang T T, Gong Y Y, Wang B, Cen D Y and Xu F 2022 J. Mater. Sci. Technol. 104 59
[56] Ma S C, Ge Q, Yang S, Yu K, Han X Q, Liu K, Song Y, Zhang L L, Jiang Q Z, Zhong M L, Liu R H, Wang L, Li J J and Zhong Z C 2017 J. Alloys Compd. 729 1190
[57] Meng X L, Sato M and Ishida A 2009 Acta Mater. 57 1525
[58] Baur A P, Cayron C and Logé R E 2019 Acta Mater. 179 247
[59] He B B, Huang M X, Ngan A H W and Van Der Zwaag S 2014 Metall. Mater. Trans. A 45 4875
[60] Wakasa K and Wayman C 1979 Scr. Metall. 13 1163
[61] Lovey C F, Ferron J, De Bernardez S L and Ahlers M 1983 Scr. Metall. 17 501
[62] Ahlers M, Pascual R, Rapacioli R and Arneodo W 1977 Mater. Sci. Eng. 27 49
[63] Wayman C M 1975 Metallography. 8 105
[64] Wayman C M 1964 Introduction to the crystallography of martensitic transformations (New York:Macmillan)
[65] Bag P and Nath R 2017 Solid State Commun. 270 54
[66] Chen J H, Us Saleheen A, Karna S K, Young D P, Dubenko I, Ali N and Stadler S 2018 J. Appl. Phys. 124 203903
[67] Liu E K, Wei Z Y, Li Y, Liu G D, Luo H Z, Wang W H, Zhang H W and Wu G H 2014 Appl. Phys. Lett. 105 062401
[1] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[2] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[3] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[4] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[5] Elastocaloric effect and mechanical behavior for NiTi shape memory alloys
Min Zhou(周敏), Yu-Shuang Li(李玉霜), Chen Zhang(张晨), Lai-Feng Li(李来风). Chin. Phys. B, 2018, 27(10): 106501.
[6] Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2017, 26(3): 036501.
[7] Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x=1, 2, 3, and 4) alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(1): 017501.
[8] Magnetic and mechanical properties of Ni–Mn–Ga/Fe–Ga ferromagnetic shape memory composite
Tan Chang-Long (谭昌龙), Zhang Kun (张琨), Tian Xiao-Hua (田晓华), Cai Wei (蔡伟). Chin. Phys. B, 2015, 24(5): 057502.
[9] Electronic structures and magnetisms of the Co2TiSb1-xSnx (x=0, 0.25, 0.5) Heusler alloys: A theoretical study of the shape-memory behavior
Wang Li-Ying (王立英), Dai Xue-Fang (代学芳), Wang Xiao-Tian (王啸天), Lin Ting-Ting (林婷婷), Chen Lei (陈磊), Liu Ran (刘然), Cui Yu-Ting (崔玉亭), Liu Guo-Dong (刘国栋). Chin. Phys. B, 2015, 24(12): 126201.
[10] Evolution of magnetic domain structure of martensite in Ni-Mn-Ga films under the interplay of the temperature and magnetic field
Xie Ren (谢忍), Wei Jun (韦俊), Liu Zhong-Wu (刘仲武), Tang Yan-Mei (唐妍梅), Tang Tao (唐涛), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(6): 068103.
[11] Relation between martensitic transformation temperature range and lattice distortion ratio of NiMnGaCoCu Heusler alloys
Wei Jun (韦俊), Xie Ren (谢忍), Chen Le-Yi (陈乐易), Tang Yan-Mei (唐研梅), Xu Lian-Qiang (许连强), Tang Shao-Long (唐少龙), Du You-Wei (都有为). Chin. Phys. B, 2014, 23(4): 048107.
[12] Pressure effects on magnetic properties and martensitic transformation of Ni–Mn–Sn magnetic shape memory alloys
Zhang Ya-Zhuo (张雅卓), Cao Jia-Mu (曹伽牧), Tan Chang-Long (谭昌龙), Cao Yi-Jiang (曹一江), Cai Wei (蔡伟). Chin. Phys. B, 2014, 23(3): 037504.
[13] Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒). Chin. Phys. B, 2013, 22(12): 126201.
[14] Transformation behaviors, structural and magnetic characteristics of Ni–Mn–Ga films on MgO (001)
Xie Ren (谢忍), Tang Shao-Long (唐少龙), Tang Yan-Mei (唐妍梅), Liu Xiao-Chen (刘枭辰), Tang Tao (唐涛), Du You-Wei (都有为). Chin. Phys. B, 2013, 22(10): 107502.
[15] The effect of Fe on the martensitic transformation of TaRu high-temperature shape memory alloys:A first-principles study
Tan Chang-Long(谭昌龙), Tian Xiao-Hua (田晓华), and Cai Wei(蔡伟) . Chin. Phys. B, 2012, 21(5): 057105.
No Suggested Reading articles found!