INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Pre-existing orthorhombic embryos-induced hexagonal—orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy |
Ting-Ting Zhang(张婷婷), Yuan-Yuan Gong(龚元元), Zi-Qian Lu(鲁子骞), and Feng Xu(徐锋)† |
MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The thermal—elastic martensitic transformation from high-temperature Ni$_{2}$In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in Mn$MX$ ($M={\rm Ni}$ or Co, and $X={\rm Ge}$ or Si) alloys. However, the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear. In this work, the hexagonal—orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated. One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature ($M_{\rm s}$). With the the sample cooing to $M_{\rm s}$, the laths turn broader, indicating that the martensitic transformation starts from these pre-existing orthorhombic laths. Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal—orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the pre-existing orthorhombic laths. The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent. Therefore, the orthorhombic martensite can take these pre-existing laths as embryos and grow up. This work implies that the martensitic transformation in MnNiSi$_{1-x}$(CoNiGe)$_{x}$ alloy is initiated by orthorhombic embryos.
|
Received: 18 September 2023
Revised: 17 December 2023
Accepted manuscript online: 25 December 2023
|
PACS:
|
81.30.Kf
|
(Martensitic transformations)
|
|
81.05.Bx
|
(Metals, semimetals, and alloys)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974184). |
Corresponding Authors:
Feng Xu
E-mail: xufeng@njust.edu.cn
|
Cite this article:
Ting-Ting Zhang(张婷婷), Yuan-Yuan Gong(龚元元), Zi-Qian Lu(鲁子骞), and Feng Xu(徐锋) Pre-existing orthorhombic embryos-induced hexagonal—orthorhombic martensitic transformation in MnNiSi1-x(CoNiGe)x alloy 2024 Chin. Phys. B 33 048103
|
[1] Kireeva I V, Chumlyakov Y I, Vyrodova A V, Pobedennaya Z V and Marchenko E S 2022 Mater. Lett. 324 132817 [2] Lu H Z, Liu L H, Yang C, Luo X, Song C H, Wang Z, Wang J, Su Y D, Ding Y F, Zhang L C and Li Y Y 2022 J. Mater. Sci. Technol. 101 205 [3] Turabi A S, Karaca H E, Tobe H, Basaran B, Aydogdu Y and Chumlyakov Y I 2016 Scripta Mater. 111 110 [4] Cong D Y, Xiong W X, Planes A, Ren Y, Mañosa L, Cao P Y, Nie Z H, Sun X M, Yang Z, Hong X F and Wang Y D 2019 Phys. Rev. Lett. 122 255703 [5] Niu Y R, Chen H Y, Zhang X Y, Li S W, Cong D Y, Ma T Y, Li S L, Lin J P and Wang Y D 2021 Scripta Mater. 204 114123 [6] Xue D Q, Yuan R H, Yang Y C, Pang J B, Zhou Y M, Ding X D, Lookman T, Ren X B, Sun J and Xue D Z 2022 J. Mater. Sci. Technol. 103 8 [7] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nat. Mater. 4 450 [8] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat. Mater. 11 620 [9] Yang Q, Wang S L, Chen J, Zhou T N, Peng H B and Wen Y H 2016 Acta Mater. 111 348 [10] Zárubová N, Gemperlová J, Gemperle A, Dlabáček Z, vSittner P and Novák V 2010 Acta Mater. 58 5109 [11] Liu C, Zhao Y P and Yu T 2005 Mater. Design 26 465 [12] Sarawate N and Dapino M 2006 Appl. Phys. Lett. 88 121923 [13] Karaman I, Basaran B, Karaca H E, Karsilayan A I and Chumlyakov Y I 2007 Appl. Phys. Lett. 90 172505 [14] Li C, Gong Y Y, Wang Y, Xu G Z, Chu R X, Wang Y J and Xu F 2020 ACS Appl. Electron. Mater. 2 1048 [15] Zhou H, Wang D K, Li Z, Cong J Z, Yu Z, Zhao S, Jiang P, Cong D Y, Zheng X Q, Qiao K M and Zhang H 2022 J. Mater. Sci. Technol. 114 73 [16] Shen F R, Zhou H B, Hu F X, Wang J T, Wu H, Huang Q Z, Hao J Z, Yu Z B, Gao Y H, Lin Y X, Wang Y, Zhang C, Yin Z, Wang J, Deng S, Chen J, He L H, Liang T J, Sun J R, Zhao T Y and Shen B G 2021 J. Am. Chem. Soc. 143 6798 [17] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H and Zhang X X 2015 Adv. Electron. Mater. 1 1500076 [18] Anzai S and Ozawa K 1978 Phys. Rev. B 18 2173 [19] Aznar A, Lloveras P, Kim J, Stern-Taulats E, Barrio M, Tamarit J L, Sánchez-Valdés C F, Sánchez Llamazares J L, Mathur N D and Moya X 2019 Adv. Mater. 31 1903577 [20] Biswas A, Pathak A K, Zarkevich N A, Liu X, Mudryk Y, Balema V, Johnson D D and Pecharsky V K 2019 Acta Mater. 180 341 [21] Dutta P, Pramanick S, Singh V, Major D T, Das D and Chatterjee S 2016 Phys. Rev. B 93 134408 [22] Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G and Wu G H 2019 Acta Mater. 174 289 [23] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F 2012 Nat. Commun. 3 873 [24] Liu J, Gong Y Y, You Y R, You X M, Huang B W, Miao X F, Xu G Z, Xu F and Brück E 2019 Acta Mater. 174 450 [25] Zhao Y Y, Hu F X, Bao L F, Wang J, Wu H, Huang Q Z, Wu R R, Liu Y, Shen F R, Kuang H, Zhang M, Zuo W L, Zheng X Q, Sun J R and Shen B G 2015 J. Am. Chem. Soc. 137 1746 [26] Gong Y Y, Wang D H, Cao Q Q, Du Y W, Zhi T, Zhao B C, Dai J M, Sun Y P, Zhou H B, Lu Q Y and Liu J 2015 Acta Mater. 98 113 [27] Liu J, Gong Y Y, Zhang F Q, You Y R, Xu G Z, Miao X F and Xu F 2021 J. Mater. Sci. Technol. 76 104 [28] Staunton J B, dos Santos Dias M, Peace J, Gercsi Z and Sandeman K G 2013 Phys. Rev. B 87 060404 [29] Zhang C L, Wang D H, Han Z D, Qian B, Shi H F, Zhu C, Chen J and Wang T Z 2013 Appl. Phys. Lett. 103 132411 [30] Chen J H, Poudel Chhetri T, Us Saleheen A, Young D P, Dubenko I, Ali N and Stadler S 2019 Intermetallics 112 106547 [31] Kasimov D, Liu J, Gong Y Y, Xu G G, Xu F and Lu G W 2018 J. Alloys Compd. 733 15 [32] Xiao Y N, Zhang H, Zhang Y L, Long K, W Xing C F, Liu Y W and Long Y 2018 J. Alloys Compd. 769 916 [33] Dutta P, Das D, Chatterjee S, Pramanick S and Majumdar S 2016 J. Phys. D:Appl. Phys. 49 125001 [34] Liu E K, Du Y, Chen J L, Wang W H, Zhang H W and Wu G H 2011 IEEE Trans. Magn. 47 4041 [35] Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. 43 8036 [36] Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W and Long Y 2017 Mater. Design 114 531 [37] Bowles J S and Mackenzie J K 1954 Acta Metallurgica 2 129 [38] Olson G B and Cohen M 1982 Theory of Martensitic Nucleation:A current Assessment (New York:Metallurgical Soc. of AIME) pp. 1145——1164 [39] Cech R E and Turnbull D 1956 JOM 8 124 [40] Greninger A B and Mooradian V G 1938 Aime. Trans. 128 337 [41] Allibert C, Bernard C, Effenberg G, Nüssler H D and Spencer P J 1981 Calphad. 5 227 [42] Magee C L 1971 Metallurgical Transactions 2 2419 [43] Easterling K E and Miekk-Oja H M 1967 Acta Metallurgica 15 1133 [44] Easterling K E and Swann P R 1971 Acta Metallurgica 19 117 [45] Lecroisey F and Pineau A 1972 Metall Mater. Trans. B 3 391 [46] Werner M and Seeger A 1989 Strength of Metals and Alloys (ICSMA 8), August 22——26, 1988, Tampere, Finland, pp. 173——178 [47] Li B, Zhang X M, Clapp P C and Rifkin J A 2004 J. Appl. Phys. 95 1698 [48] Reid A C E and Olson G B 2001 Mater. Sci. Eng. A 309 370 [49] Saburi T, Komatsu T, Nenno S and Watanabe Y 1986 J. Less-Common Met. 118 217 [50] Fukuda T, Saburi T, Doi K and Nenno S 1992 Mater. Tran. Jim. 33 271 [51] Ibarra A, Caillard D, San Juan J and Nó M L 2007 Appl. Phys. Lett. 90 101907 [52] Clapp C 1973 Phys. Stat. Sol. (b) 57 561 [53] Knapp H and Dehlinger U 1956 Acta Metallurgica 4 289 [54] Chulist R, Straka L, Sozinov A, Tokarski T and Skrotzki W 2017 Acta Mater. 128 113 [55] Zhang T T, Gong Y Y, Wang B, Cen D Y and Xu F 2022 J. Mater. Sci. Technol. 104 59 [56] Ma S C, Ge Q, Yang S, Yu K, Han X Q, Liu K, Song Y, Zhang L L, Jiang Q Z, Zhong M L, Liu R H, Wang L, Li J J and Zhong Z C 2017 J. Alloys Compd. 729 1190 [57] Meng X L, Sato M and Ishida A 2009 Acta Mater. 57 1525 [58] Baur A P, Cayron C and Logé R E 2019 Acta Mater. 179 247 [59] He B B, Huang M X, Ngan A H W and Van Der Zwaag S 2014 Metall. Mater. Trans. A 45 4875 [60] Wakasa K and Wayman C 1979 Scr. Metall. 13 1163 [61] Lovey C F, Ferron J, De Bernardez S L and Ahlers M 1983 Scr. Metall. 17 501 [62] Ahlers M, Pascual R, Rapacioli R and Arneodo W 1977 Mater. Sci. Eng. 27 49 [63] Wayman C M 1975 Metallography. 8 105 [64] Wayman C M 1964 Introduction to the crystallography of martensitic transformations (New York:Macmillan) [65] Bag P and Nath R 2017 Solid State Commun. 270 54 [66] Chen J H, Us Saleheen A, Karna S K, Young D P, Dubenko I, Ali N and Stadler S 2018 J. Appl. Phys. 124 203903 [67] Liu E K, Wei Z Y, Li Y, Liu G D, Luo H Z, Wang W H, Zhang H W and Wu G H 2014 Appl. Phys. Lett. 105 062401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|