INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Direct growth of graphene films without catalyst on flexible glass substrates by PECVD |
Rui-Xia Miao(苗瑞霞)†, Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青)‡, Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔) |
School of Electronic Engineering, Xi'an University of Posts&Telecommunications, Xi'an 710121, China |
|
|
Abstract A hydrogen-plasma-etching-based plasma-enhanced chemical vapor deposition (PECVD) synthesis route without metal catalyst for preparing the graphene films on flexible glass is developed. The quality of the prepared graphene films is evaluated by scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. In a radio frequency (RF) power range of 50 W-300 W, the graphene growth rate increases with RF power increasing, while the intensity ratio of D- to G-Raman peak (ID/IG) decreases. When the RF power is higher than 300 W, the ID/IG rises again. By optimizing experimental parameters of hydrogen plasma etching and RF power, the properties of as-prepared flexible graphene on glass are modulated to be able to achieve the graphene's transparency, good electrical conductivity, and better macroscopic uniformity. Direct growth of graphene film without any metal catalyst on flexible glass can be a promising candidate for applications in flexible transparent optoelectronics.
|
Received: 02 December 2020
Revised: 02 March 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51302215), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University, China (Grant No. 2020GXLH-Z-029), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2018JQ6084 and 2019JQ-860). |
Corresponding Authors:
Rui-Xia Miao, Shao-Qing Wang
E-mail: miao9508301@xupt.edu.cn;Wsqing1212@163.com
|
Cite this article:
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔) Direct growth of graphene films without catalyst on flexible glass substrates by PECVD 2021 Chin. Phys. B 30 098101
|
[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [2] Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N and Li L J 2011 Acs Nano 5 2332 [3] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C and Coleman J N 2008 Nat. Nanotechnol. 3 563 [4] Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G and Feng Z H 2014 Chin. Phys. Lett. 31 078104 [5] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J and Zhang Y 2010 Nano Lett. 10 1542 [6] Teng P Y, Lu C C, Akiyama-Hasegawa K, Lin Y C, Yeh C H, Suenaga K and Chiu P W 2012 Nano Lett. 12 1379 [7] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoff R S 2013 Science 342 720 [8] Li D, Mueller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101 [9] Tung V C, Allen M J, Yang Y and Kaner R B 2009 Nat. Nanotechnol. 4 25 [10] Al-khattib M G, Samir A and Hassaballa S 2020 Opt. Quantum Electron. 52 217 [11] Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S and Liu Z 2011 Nat. Commun. 2 522 [12] Luo W G, Wang H F, Cai K M, Han W P, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 607207 [13] Rybin M G, Kondrashov, Ⅱ, Pozharov A S, Nguyen V C, Phan N M and Obraztsova E D 2018 Phys. Status Solidi B 255 1700414 [14] Losurdo M, Giangregorio M M, Capezzuto P and Bruno G 2011 Phys. Chem. Chem. Phys. 13 20836 [15] Zhang Y, Fu Y, Edwards M, Jeppson K, Ye L and Liu J 2017 Mater. Lett. 193 255 [16] Chugh S, Mehta R, Lu N, Dios F D, Kim M J and Chen Z 2015 Carbon 93 393 [17] Sun J, Chen Y, Cai X, Ma B, Chen Z, Priydarshi M K, Chen K, Gao T, Song X, Ji Q, Guo X, Zou D, Zhang Y and Liu Z 2015 Nano Res. 8 3496 [18] Mischke J, Pennings J, Weisenseel E, Kerger P, Rohwerder M, Mertin W and Bacher G 2020 2D Mater. 7 035019 [19] Pham V P, Jang H S, Whang D and Choi J Y 2017 Chem. Soc. Rev. 46 6276 [20] Marchena M, Janner D, Chen T L, Finazzi V and Pruneri V 2016 Opt. Mater. Express 6 2487 [21] Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y and Liu Z 2019 J. Mater. Chem. A 7 4813 [22] Shan J, Cui L, Zhou F, Wang R, Cui K, Zhang Y and Liu Z 2020 Acs Appl. Mater. Interfaces 12 11972 [23] Yang C Y, Bi H, Wan D Y, Huang F Q, Xie X M and Jiang M H 2013 J. Mater. Chem. A 1 770 [24] Ci H, Ren H, Qi Y, Chen X, Chen Z, Zhang J, Zhang Y and Liu Z 2018 Nano Res. 11 3106 [25] Zhang L F, Feng S P, Xiao S Q, Shen G, Zhang X M, Nan H Y, Gu X F and Ostrikov K 2018 Appl. Surf. Sci. 441 639 [26] Yang X, Tang S, Ding G, Xie X, Jiang M and Huang F 2012 Nanotechnology 23 025704 [27] Zhang W, Wu P, Li Z and Yang J 2011 J. Phys. Chem. C 115 17782 [28] Chu J, Han Y J, Li Y M, Jia P F, Cui H, Duan S K, Feng P T and Peng X Y 2020 J. Phys. D: Appl. Phys. 53 3251019 [29] Mohanta A, Lanfant B, Asfaha M and Leparoux M 2017 Appl. Phys. Lett. 110 093109 [30] Chang Y C, Yen C C, Tsai H C, Chen T C, Yang C M, Chen C H and Woon W Y 2020 Carbon 159 570 [31] Ivan Vlassiouk M R, Pasquale Fulvio, Sheng Dai, Panos Datskos, Gyula Eres and Sergei Smirnov 2011 Carbon 5 6069 [32] Wang H, Zhou Y, Qi M, Liu C, Xu X and Ren Z 2018 J. Phys. Chem. C 123 2370 [33] Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126 [34] Zhao G, Shao D, Chen C and Wang X 2011 Appl. Phys. Lett. 98 183114 [35] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A and Ruoff R S 2009 Carbon 47 145 [36] Basumatary B, Podder S, Sharma B, Pal A R, Sahariah M B, Sen Sarma N and Patil D S 2020 J. Electron. Mater. 49 5467 [37] Zhao M, Xue Z, Zhu W, Wang G, Tang S, Liu Z, Guo Q, Chen D, Chu P K, Ding G and Di Z 2020 Acs Appl. Mater. Interfaces 12 15606 [38] Li J R, Liu Z D, Guo Q L, Yang S W, Xu A L, Wang Z W, Wang G, Wang Y Q, Chen D and Ding G Q 2019 J. Mater. Chem. C 7 5995 [39] Gunes F, Han G H, Kim E S, Chae S J, Park M H, Jeong H K, Seong Chu Lim and Young Hee Lee 2009 Nano 4 83 [40] Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L and Wu M 2014 Nat. Commun. 5 5357 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|