Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 098101    DOI: 10.1088/1674-1056/abeeec
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Direct growth of graphene films without catalyst on flexible glass substrates by PECVD

Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔)
School of Electronic Engineering, Xi'an University of Posts&Telecommunications, Xi'an 710121, China
Abstract  A hydrogen-plasma-etching-based plasma-enhanced chemical vapor deposition (PECVD) synthesis route without metal catalyst for preparing the graphene films on flexible glass is developed. The quality of the prepared graphene films is evaluated by scanning electron microscopy, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. In a radio frequency (RF) power range of 50 W-300 W, the graphene growth rate increases with RF power increasing, while the intensity ratio of D- to G-Raman peak (ID/IG) decreases. When the RF power is higher than 300 W, the ID/IG rises again. By optimizing experimental parameters of hydrogen plasma etching and RF power, the properties of as-prepared flexible graphene on glass are modulated to be able to achieve the graphene's transparency, good electrical conductivity, and better macroscopic uniformity. Direct growth of graphene film without any metal catalyst on flexible glass can be a promising candidate for applications in flexible transparent optoelectronics.
Keywords:  graphene      flexible glass      PECVD      RF power  
Received:  02 December 2020      Revised:  02 March 2021      Accepted manuscript online:  16 March 2021
PACS:  81.05.ue (Graphene)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51302215), the Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University, China (Grant No. 2020GXLH-Z-029), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2018JQ6084 and 2019JQ-860).
Corresponding Authors:  Rui-Xia Miao, Shao-Qing Wang     E-mail:  miao9508301@xupt.edu.cn;Wsqing1212@163.com

Cite this article: 

Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔) Direct growth of graphene films without catalyst on flexible glass substrates by PECVD 2021 Chin. Phys. B 30 098101

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Su C Y, Lu A Y, Xu Y, Chen F R, Khlobystov A N and Li L J 2011 Acs Nano 5 2332
[3] Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C and Coleman J N 2008 Nat. Nanotechnol. 3 563
[4] Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G and Feng Z H 2014 Chin. Phys. Lett. 31 078104
[5] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J and Zhang Y 2010 Nano Lett. 10 1542
[6] Teng P Y, Lu C C, Akiyama-Hasegawa K, Lin Y C, Yeh C H, Suenaga K and Chiu P W 2012 Nano Lett. 12 1379
[7] Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L and Ruoff R S 2013 Science 342 720
[8] Li D, Mueller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
[9] Tung V C, Allen M J, Yang Y and Kaner R B 2009 Nat. Nanotechnol. 4 25
[10] Al-khattib M G, Samir A and Hassaballa S 2020 Opt. Quantum Electron. 52 217
[11] Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S and Liu Z 2011 Nat. Commun. 2 522
[12] Luo W G, Wang H F, Cai K M, Han W P, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 607207
[13] Rybin M G, Kondrashov, Ⅱ, Pozharov A S, Nguyen V C, Phan N M and Obraztsova E D 2018 Phys. Status Solidi B 255 1700414
[14] Losurdo M, Giangregorio M M, Capezzuto P and Bruno G 2011 Phys. Chem. Chem. Phys. 13 20836
[15] Zhang Y, Fu Y, Edwards M, Jeppson K, Ye L and Liu J 2017 Mater. Lett. 193 255
[16] Chugh S, Mehta R, Lu N, Dios F D, Kim M J and Chen Z 2015 Carbon 93 393
[17] Sun J, Chen Y, Cai X, Ma B, Chen Z, Priydarshi M K, Chen K, Gao T, Song X, Ji Q, Guo X, Zou D, Zhang Y and Liu Z 2015 Nano Res. 8 3496
[18] Mischke J, Pennings J, Weisenseel E, Kerger P, Rohwerder M, Mertin W and Bacher G 2020 2D Mater. 7 035019
[19] Pham V P, Jang H S, Whang D and Choi J Y 2017 Chem. Soc. Rev. 46 6276
[20] Marchena M, Janner D, Chen T L, Finazzi V and Pruneri V 2016 Opt. Mater. Express 6 2487
[21] Wei N, Li Q, Cong S, Ci H, Song Y, Yang Q, Lu C, Li C, Zou G, Sun J, Zhang Y and Liu Z 2019 J. Mater. Chem. A 7 4813
[22] Shan J, Cui L, Zhou F, Wang R, Cui K, Zhang Y and Liu Z 2020 Acs Appl. Mater. Interfaces 12 11972
[23] Yang C Y, Bi H, Wan D Y, Huang F Q, Xie X M and Jiang M H 2013 J. Mater. Chem. A 1 770
[24] Ci H, Ren H, Qi Y, Chen X, Chen Z, Zhang J, Zhang Y and Liu Z 2018 Nano Res. 11 3106
[25] Zhang L F, Feng S P, Xiao S Q, Shen G, Zhang X M, Nan H Y, Gu X F and Ostrikov K 2018 Appl. Surf. Sci. 441 639
[26] Yang X, Tang S, Ding G, Xie X, Jiang M and Huang F 2012 Nanotechnology 23 025704
[27] Zhang W, Wu P, Li Z and Yang J 2011 J. Phys. Chem. C 115 17782
[28] Chu J, Han Y J, Li Y M, Jia P F, Cui H, Duan S K, Feng P T and Peng X Y 2020 J. Phys. D: Appl. Phys. 53 3251019
[29] Mohanta A, Lanfant B, Asfaha M and Leparoux M 2017 Appl. Phys. Lett. 110 093109
[30] Chang Y C, Yen C C, Tsai H C, Chen T C, Yang C M, Chen C H and Woon W Y 2020 Carbon 159 570
[31] Ivan Vlassiouk M R, Pasquale Fulvio, Sheng Dai, Panos Datskos, Gyula Eres and Sergei Smirnov 2011 Carbon 5 6069
[32] Wang H, Zhou Y, Qi M, Liu C, Xu X and Ren Z 2018 J. Phys. Chem. C 123 2370
[33] Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126
[34] Zhao G, Shao D, Chen C and Wang X 2011 Appl. Phys. Lett. 98 183114
[35] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner R D, Stankovich S, Jung I, Field D A, Ventrice C A and Ruoff R S 2009 Carbon 47 145
[36] Basumatary B, Podder S, Sharma B, Pal A R, Sahariah M B, Sen Sarma N and Patil D S 2020 J. Electron. Mater. 49 5467
[37] Zhao M, Xue Z, Zhu W, Wang G, Tang S, Liu Z, Guo Q, Chen D, Chu P K, Ding G and Di Z 2020 Acs Appl. Mater. Interfaces 12 15606
[38] Li J R, Liu Z D, Guo Q L, Yang S W, Xu A L, Wang Z W, Wang G, Wang Y Q, Chen D and Ding G Q 2019 J. Mater. Chem. C 7 5995
[39] Gunes F, Han G H, Kim E S, Chae S J, Park M H, Jeong H K, Seong Chu Lim and Young Hee Lee 2009 Nano 4 83
[40] Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L and Wu M 2014 Nat. Commun. 5 5357
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[7] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!