Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 046801    DOI: 10.1088/1674-1056/abd396
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Super-strong interactions between multivalent anions and graphene

Xing Liu(刘星)1 and Guosheng Shi(石国升)1,2,†
1 Shanghai Applied Radiation Institute, State Key Laboratory Advanced Special Steel, Shanghai University, Shanghai 200444, China; 2 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Based on the density functional theory (DFT) calculations, we showed that the interactions between different valence anions (PO43-, CH3PO42-, (CH3)2PO4-) and graphene significantly increased as the valence of anion increased from negative monovalence to negative trivalence. The adsorption energy of (CH3)2PO4- on the electron-rich graphene flake (C84H24) is -8.3 kcal/mol. The adsorption energy of CH3PO42- on the electron-rich graphene flake (C84H24) is -48.0 kcal/mol, which is about six times that of (CH3)2PO4- adsorption on electron-rich graphene flake (C84H24) and is even much larger than that of CO32- adsorption on electron-deficient aromatic ring C6F6 (-28.4 kcal/mol). The adsorption energy of PO43- on the electron-rich graphene flake (C84H24) is -159.2 kcal/mol, which is about 20 times that of (CH3)2PO4- adsorption on the graphene flake (C84H24). The super-strong adsorption energy is mainly attributed to the orbital interactions between multivalent anions and graphene. This work provides new insights for understanding the interaction between multivalent anions and π -electron-rich carbon-based nanomaterials and is helpful for the design of graphene-based DNA biosensor.
Keywords:  graphene      multivalent anions      anion-π interaction      density functional theory  
Received:  19 October 2020      Revised:  19 November 2020      Accepted manuscript online:  15 December 2020
PACS:  81.05.ue (Graphene)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  31.15.E (Density-functional theory)  
Fund: Project supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 11722548), the China Postdoctoral Science Foundation (Grant No. 2019M651462), the National Natural Science Foundation of China (Grant No. U1932123), the Innovative Research Team of High-Level Local Universities in Shanghai, the Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy and the Science and Technology Commission of Shanghai Municipality (Gant No. 19DZ2270200), the Deepcomp7000 and ScGrid of Supercomputing Center, Computer Network Information Center of the Chinese Academy of Sciences, the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (second phase), the Shanghai Supercomputer Center of China, the High Performance Computing Platform of Shanghai University.
Corresponding Authors:  Corresponding author. E-mail: gsshi@shu.edu.cn   

Cite this article: 

Xing Liu(刘星) and Guosheng Shi(石国升) Super-strong interactions between multivalent anions and graphene 2021 Chin. Phys. B 30 046801

1 Qui\nonero D, Garau C, Rotger C, Frontera A, Ballester P, Costa A and Dey\`a P M 2002 Angew. Chem. Int. Ed. 41 3389
2 Alkorta I, Rozas I and Elguero J 2002 J. Am. Chem. Soc. 124 8593
3 Mascal M, Armstrong A and Bartberger M D 2002 J. Am. Chem. Soc. 124 6274
4 Kim D, Tarakeshwar P and Kim K S 2004 J. Phys. Chem. A 108 1250
5 Schottel B L, Chifotides H T and Dunbar K R 2008 Chem. Soc. Rev. 37 68
6 Caltagirone C and Gale P A 2009 Chem. Soc. Rev. 38 520
7 Estarellas C, Frontera A, Qui\ nonero D and Dey\`a P M 2011 Angew. Chem. Int. Ed. 50 415
8 Frontera A, Gamez P, Mascal M, Mooibroek T J and Reedijk J 2011 Angew. Chem. Int. Ed. 50 9564
9 Wang D X and Wang M X 2013 J. Am. Chem. Soc. 135 892
10 Chifotides H T and Dunbar K R 2013 Acc. Chem. Res. 46 894
11 Lucas X, Bauzà A, Frontera A and Qui\nonero D 2016 Chem. Sci. 7 1038
12 Xi J and Xu X 2016 Phys. Chem. Chem. Phys. 18 6913
13 Anstöter C S, Rogers J P and Verlet J R R 2019 J. Am. Chem. Soc. 141 6132
14 Zhang J, Xiang L, Yan B and Zeng H 2020 J. Am. Chem. Soc. 142 1710
15 Garau C, Frontera A, Qui\ nonero D, Russo N and Dey\`a P M 2011 J. Chem. Theory Comput. 7 3012
16 Lucas X, Qui\ nonero D, Frontera A and Dey\`a P M 2009 J. Phys. Chem. A 113 10367
17 Shi G, Yang J, Ding Y and Fang H 2014 ChemPhysChem 15 2588
18 Shi G, Ding Y and Fang H 2012 J. Comput. Chem. 33 1328
19 Lu C H, Yang H H, Zhu C L, Chen X and Chen G N 2009 Angew. Chem. Int. Ed. 48 4785
20 Yang W, Ratinac K R, Ringer S P, Thordarson P, Gooding J J and Braet F 2010 Angew. Chem. Int. Ed. 49 2114
21 Sassolas A, Leca-Bouvier B D and Blum L J 2008 Chem. Rev. 108 109
22 Min S K, Kim W Y, Cho Y and Kim K S 2011 Nat. Nanotechnol. 6 162
23 Tang L, Wang Y and Li J 2015 Chem. Soc. Rev. 44 6954
24 Xu Z, Lei X, Tu Y, Tan Z J, Song B and Fang H 2017 Chem. -Eur. J. 23 13100
25 Lei X, Ma H and Fang H 2020 Nanoscale 12 6699
26 Ma H, Xu Z, Fang H and Lei X 2020 Phys. Chem. Chem. Phys. 22 11740
27 Antony J and Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
28 Sowerby S J, Cohn C A, Heckl W M and Holm N G 2001 Proc. Natl. Acad. Sci. 98 820
29 Gowtham S, Scheicher R H, Ahuja R, Pandey R and Karna S P 2007 Phys. Rev. B 76 033401
30 Varghese N, Mogera U, Govindaraj A, Das A, Maiti P K, Sood A K and Rao C N R 2009 ChemPhysChem 10 206
31 Westheimer F H 1987 Science 235 1173
32 Watson J D and Crick F H C 1953 Nature 171 737
33 Villa F, MacKerell A D, Roux B and Simonson T 2018 J. Phys. Chem. A 122 6147
34 Frisch M J, Trucks G W, Schlegel H B, et al.2016 Gaussian 16 Rev. C.01(Wallingford, CT)
35 te Velde G, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J A, Snijders J G and Ziegler T 2001 J. Comput. Chem. 22 931
36 Wang X B, Yang X, Nicholas J B and Wang L S 2001 Science 294 1322
37 Boldyrev A I and Simons J 1994 J. Phys. Chem. 98 2298
38 Pluha\vrovà E, On\vcàk M, Seidel R, Schroeder C, Schroeder W, Winter B, Bradforth S E, Jungwirth P and Slav\'í\vcek P 2012 J. Phys. Chem. B 116 13254
39 Sakulpaisan S, Vongsetskul T, Reamouppaturm S, Luangkachao J, Tantirungrotechai J and Tangboriboonrat P 2016 J. Environ. Manage. 167 99
40 Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100
41 Lu T and Chen F 2012 J. Comput. Chem. 33 580
42 Shi G, Liu J, Wang C, Song B, Tu Y, Hu J and Fang H 2013 Sci. Rep. 3 3436
43 Shi G S, Wang Z G, Zhao J J, Hu J and Fang H P 2011 Chin. Phys. B 20 068101
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[7] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[10] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[14] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[15] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
No Suggested Reading articles found!