Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050701    DOI: 10.1088/1674-1056/ad21f3
GENERAL Prev   Next  

TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method

Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平)†
College of Science, National University of Defense Technology, Changsha 410073, China
Abstract  Physics-informed neural networks (PINNs) have become an attractive machine learning framework for obtaining solutions to partial differential equations (PDEs). PINNs embed initial, boundary, and PDE constraints into the loss function. The performance of PINNs is generally affected by both training and sampling. Specifically, training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs, and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished. However, a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category, namely, time-dependent PDEs, where temporal information plays a key role in the algorithms used. There is one method, called Causal PINN, that considers temporal causality at the training level but not special temporal utilization at the sampling level. Incorporating temporal knowledge into sampling remains to be studied. To fill this gap, we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality. By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain, we provide a practical solution by incorporating temporal information into sampling. Numerical experiments of several nonlinear time-dependent PDEs, including the Cahn-Hilliard, Korteweg-de Vries, Allen-Cahn and wave equations, show that our proposed sampling method can improve the performance. We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods, especially when points are limited.
Keywords:  partial differential equation      physics-informed neural networks      residual-based adaptive sampling      temporal causality  
Received:  18 October 2023      Revised:  08 January 2024      Accepted manuscript online:  24 January 2024
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.30.Jr (Partial differential equations)  
  84.35.+i (Neural networks)  
Fund: Project supported by the Key National Natural Science Foundation of China (Grant No. 62136005) and the National Natural Science Foundation of China (Grant Nos. 61922087, 61906201, and 62006238).
Corresponding Authors:  Chenping Hou     E-mail:  hcpnudt@hotmail.com

Cite this article: 

Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平) TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method 2024 Chin. Phys. B 33 050701

[1] Izrailev F M 1990 Phys. Rep. 196 299
[2] Santhanam M S, Paul S and Kannan J B 2022 Phys. Rep. 956 1
[3] Kukuljan I, Grozdanov S and Prosen T 2017 Phys. Rev. B 96 060301
[4] Chaudhury S, Smith A, Anderson B E, et al. 2009 Nature 461 768
[5] Kenfack A, Gong J and Pattanayak A K 2008 Phys. Rev. Lett. 100 044104
[6] Gong J and Brumer P 2002 Phys. Rev. Lett. 88 203001
[7] Gong J and Brumer P 2001 Phys. Rev. Lett. 86 1741
[8] Tomsovic S, Urbina J D and Richter K 2023 Phys. Rev. E 108 044202
[9] Benenti G, Casati G, Montangero S, et al. 2001 Phys. Rev. Lett. 87 227901
[10] Lee J W and Shepelyansky D L 2005 Phys. Rev. E 71 056202
[11] Song P H and Shepelyansky D L 2001 Phys. Rev. Lett. 86 2162
[12] Benenti G, Casati G, Montangero S, et al. 2003 Phys. Rev. A 67 052312
[13] Giannakis D, Ourmazd A, Pfeffer P, et al. 2022 Phys. Rev. A 105 052404
[14] Wang J, Benenti G, Casati G, et al. 2021 Phys. Rev. E 103 L030201
[15] Cohen D 1991 Phys. Rev. A 44 2292
[16] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 659
[17] Toda M, Adachi S and Ikeda K 1989 Prog. Theor. Phys. 98 323
[18] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 655
[19] Yang Y B and Wang W G 2015 Chin. Phys. Lett. 32 030301
[20] Ping W, Qiang Z and Wang W G 2010 Chin. Phys. Lett. 27 080301
[21] Zhang S H, Jie Q L and Zhuo W 2009 Commun. Theor. Phys. 52 221
[22] Zhao W L and Jie Q 2020 Chin. Phys. B 29 080302
[23] Casati G 1979 LNP 93
[24] Frahm K M and Shepelyansky D L 2009 Phys. Rev. E 80 016210
[25] Guarneri I, Casati G and Karle V 2014 Phys. Rev. Lett. 113 174101
[26] Suntajs J, Prosen T and Vidmar L 2023 Phys. Rev. B 107 064205
[27] Ali T, Bhattacharyya A, Haque S S, et al. 2020 Phys. Rev. D 101 026021
[28] Bera S, Lokesh K Y V and Banerjee S 2022 Phys. Rev. Lett. 128 115302
[29] Rozenbaum E B, Ganeshan S and Galitski V 2019 Phys. Rev. B 100 035112
[30] Borgonovi F, Izrailev F M, Santos L F, et al. 2016 Phys. Rep. 626 1
[31] Srednicki M 1994 Phys. Rev. E 50 888
[32] Bertini B, Kos P and Prosen T 2019 Phys. Rev. X 9 021033
[33] Wang X, Ghose S, Sanders B C, et al. 2004 Phys. Rev. E 70 016217
[34] Lantagne-Hurtubise É, Plugge S, Can O, et al. 2020 Phys. Rev. Res. 2 013254
[35] Georgeot B and Shepelyansky D L 2000 Phys. Rev. E 62 3504
[36] Lévi B, Georgeot B and Shepelyansky D L 2003 Phys. Rev. E 67 046220
[37] Miessen A, Ollitrault P J, Tacchino F, et al. 2023 Nat. Comput. Sci. 3 25
[38] Kharkov Y A, Sotskov V E, Karazeev A A, et al. 2020 Phys. Rev. B 101 064406
[39] Hainaut C, Manai I, Clement J F, et al. 2018 Nat. Commun. 9 1382
[40] Lopez M, Clément J F, Lemarié G, et al. 2013 New J. Phys. 15 065013
[41] Taddia L, Cornfeld E, Rossini D, et al. 2017 Phys. Rev. Lett. 118 230402
[42] Ma N and Gong J 2022 Phys. Rev. Res. 4 013234
[43] Hainaut C, Fang P, Ranǫon A, et al. 2018 Phys. Rev. Lett. 121 134101
[44] Naji J, Jafari R, Zhou L, et al. 2022 Phys. Rev. B 106 094314
[45] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[46] Nurwantoro P, Bomantara R W and Gong J 2019 Phys. Rev. B 100 214311
[47] Casati G, Guarneri I and Shepelyansky D L 1989 Phys. Rev. Lett. 62 345
[48] Shepelyansky D L 1983 Physica D 8 208
[49] Ermann L and Shepelyansky D L 2014 J. Phys. A: Math. Theor. 47 335101
[50] Zhao W L and Liu J 2023 arXiv:2305.12150[quant-ph]
[51] Zhao W and Zhang H 2022 Symmetry 15 113
[52] Wang W Y and Zhao W L 2021 J. Phys.: Condens. Matter 34 025403
[53] Huang K Q, Zhao W L and Li Z 2021 Phys. Rev. A 104 052405
[54] Huang K, Wang J, Zhao W L, et al. 2021 J. Phys.: Condens. Matter 33 055402
[55] Zhao W L and Liu J 2023 arXiv:2307.00462[quant-ph]
[56] Huo L, Ke H and Zhao W L 2024 arXiv:2401.11059[quant-ph]
[1] MetaPINNs: Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Junqiang Song(宋君强), and Hongze Leng(冷洪泽). Chin. Phys. B, 2024, 33(2): 020203.
[2] ESR-PINNs: Physics-informed neural networks with expansion-shrinkage resampling selection strategies
Jianan Liu(刘佳楠), Qingzhi Hou(侯庆志), Jianguo Wei(魏建国), and Zewei Sun(孙泽玮). Chin. Phys. B, 2023, 32(7): 070702.
[3] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040207.
[4] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[5] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[6] Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2014, 23(9): 098703.
[7] Oscillating multidromion excitations in higher-dimensional nonlinear lattice with intersite and external on-site potentials using symbolic computation
B. Srividya, L. Kavitha, R. Ravichandran, D. Gopi. Chin. Phys. B, 2014, 23(1): 010307.
[8] Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations
Ge Hong-Xia(葛红霞), Liu Yong-Qing(刘永庆), and Cheng Rong-Jun(程荣军) . Chin. Phys. B, 2012, 21(1): 010206.
[9] A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations
Chen Lin-Jie(陈林婕) and Ma Chang-Feng(马昌凤) . Chin. Phys. B, 2010, 19(1): 010504.
[10] A new variable coefficient algebraic method and non-travelling wave solutions of nonlinear equations
Lu Bin (陆 斌), Zhang Hong-Qing (张鸿庆). Chin. Phys. B, 2008, 17(11): 3974-3984.
[11] Exponential--fraction trial function method to the 5th-order mKdV equation
Li Ya-Zhou(李亚洲), Feng Wei-Gui(冯维贵), Li Kai-Ming(李开明), and Lin Chang(林长). Chin. Phys. B, 2007, 16(9): 2510-2513.
[12] Evolution property of soliton solutions for the Whitham-Broer-Kaup equation and variant Boussinesq equation
Lin Ji (林机), Xu You-Sheng (许友生), Wu Feng-Min (吴锋民). Chin. Phys. B, 2003, 12(10): 1049-1053.
No Suggested Reading articles found!