|
|
A historical overview of nano-optics: From near-field optics to plasmonics |
Miao-Yi Deng(邓妙怡)1,†, and Xing Zhu(朱星)2 |
1 Department of History of Science, Technology and Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; 2 School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract Nano-optics is an emergent research field in physics that appeared in the 1980s, which deals with light-matter optical interactions at the nanometer scale. In early studies of nano-optics, the main concern focus is to obtain higher optical resolution over the diffraction limit. The researches of near-field imaging and spectroscopy based on scanning near-field optical microscopy (SNOM) are developed. The exploration of improving SNOM probe for near-field detection leads to the emergence of surface plasmons. In the sense of resolution and wider application, there has been a significant transition from seeking higher resolution microscopy to plasmonic near-field modulations in the nano-optics community during the nano-optic development. Nowadays, studies of nano-optics prefer the investigation of plasmonics in different material systems. In this article, the history of the development of near-field optics is briefly reviewed. The difficulties of conventional SNOM to achieve higher resolution are discussed. As an alternative solution, surface plasmons have shown the advantages of higher resolution, wider application, and flexible nano-optical modulation for new devices. The typical studies in different periods are introduced and characteristics of nano-optics in each stage are analyzed. In this way, the evolution progress from near-field optics to plasmonics of nano-optics research is presented. The future development of nano-optics is discussed then.
|
Received: 25 December 2023
Revised: 12 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
Corresponding Authors:
Miao-Yi Deng
E-mail: miaoyideng@foxmail.com
|
Cite this article:
Miao-Yi Deng(邓妙怡), and Xing Zhu(朱星) A historical overview of nano-optics: From near-field optics to plasmonics 2024 Chin. Phys. B 33 050703
|
[1] Wan Q Y, Xiao K, Li Z S, Yang J, Kim J T, Cui X D and Che C M 2022 Adv. Mater. 34 2204839 [2] Parvizi P, Zou R N, Bellinger C, Cheriton R and Spinello D 2023 Photonics-Basel 10 1371 [3] Falkner S, Grade S, Dimou L, Conzelmann K K, Bonhoeffer T, Götz M and Hübener M 2016 Nature 539 248 [4] Kwiat P G 2008 Nature 453 294 [5] Friedman R S, McAlpine M C, Ricketts D S, Ham D and Lieber C M 2005 Nature 434 1085 [6] Koch S W and Knorr A 2001 Science 293 2217 [7] Wang Y, Yang J, Wang Z W, Kong X F, Sun X Y, Tian J J, Zhang X S, Zhao X L, Liu Y P, Li H S, Su Y Q, Hao X R and Xu J 2022 Front. Chem. 10 916553 [8] Kodigala A, Lepetit T and Kanté B 2016 Phys. Rev. B 94 201103(R) [9] Lal S, Link S and Halas N J 2007 Nat. Photonics 1 641 [10] Prigogine I and Rice Stuart A 1976 Adv. Chem. Phys. (United States: John Wiley & Sons, Inc.) pp. 245-307 [11] Demming A 2020 Phys. World 33 41 [12] Pohl D W, Denk W and Lanz M 1984 Appl. Phys. Lett. 44 651 [13] Catrysse P B and Fan S H 2008 J. Nanophotonics 2 021790 [14] Lereu A L, Passian A and Dumas P 2012 Int. J. Nanotechnol. 9 488 [15] Tsai D P, Jackson H E, Reddick R C, Sharp S H and Warmack R J 1990 Appl. Phys. Lett. 56 1515 [16] Tsai D P, Othonos A, Moskovits M and Uttamchandani D 1994 Appl. Phys. Lett. 64 1768 [17] Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J and Zhu X 2011 Nano Lett. 11 1676 [18] Tsai D P, Kovacs J, Wang Z H, Moskovits M, Shalaev V M, Suh J S and Botet R 1994 Phys. Rev. Lett. 72 4149 [19] Novotny L and van Hulst N 2011 Nat. Photonics 5 83 [20] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [21] Cunningham S L, Maradudin A A and Wallis R F 1974 Phys. Rev. B 10 3342 [22] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667 [23] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [24] Pendry J B, Aubry A, Smith D R and Maier S A 2012 Science 337 549 [25] Brongersma M L 2015 Faraday Discuss 178 9 [26] Maier S A 2007 Plasmonics: Fundamentals and Applications (Berlin: Springer Science & Business Media) pp. 65-88 [27] Zhu X and Ohtsu M 2000 Near-Field Optics: Principles and Applications - Proceedings of the Second Asia-Pacific Workshop (Beijing: World Scientific Publishing) pp. 9-21 [28] Biagioni P, Huang J S and Hecht B 2012 Rep. Prog. Phys. 75 024402 [29] Wessel J 1985 J. Opt. Soc. Am. B 2 1538 [30] Fischer U C and Pohl D W 1989 Phys. Rev. Lett. 62 458 [31] Novotny L and Stranick S J 2006 Annu. Rev. Phys. Chem. 57 303 [32] Grober R D, Schoelkopf R J and Prober D E 1997 Appl. Phys. Lett. 70 1354 [33] Farahani J N, Pohl D W, Eisler H J and Hecht B 2005 Phys. Rev. Lett. 95 017402 [34] Willets K A, Wilson A J, Sundaresan V and Joshi P B 2017 Chem. Rev. 117 7538 [35] Zhang W H, Fang Z Y and Zhu X 2017 Chem. Rev. 117 5095 [36] Hou W B and Cronin S B 2013 Adv. Funct. Mater. 23 1612 [37] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photonics 4 83 [38] Jiang N N, Zhuo X L and Wang J F 2018 Chem. Rev. 118 3054 [39] Deng M Y, Li Z W, Rong X, Luo Y, Li B W, Zheng L H, Wang X, Lin F, Meixner A J, Braun K, Zhu X and Fang Z Y 2020 Small 16 2003539 [40] Deng M Y, Wang X, Chen J N, Li Z W, Xue M F, Zhou Z Y, Lin F, Zhu X and Fang Z Y 2021 Adv. Funct. Mater. 31 2010234 [41] Li Z W, Li Y, Han T Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165 [42] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913 [43] Kotsifaki D G and Chormaic S N 2019 Nanophotonics-Berlin 8 1227 [44] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne R P 2008 Nat. Mater. 7 442 [45] Zhang X M, Chen Y L, Liu R S and Tsai D P 2013 Rep. Prog. Phys. 76 046401 [46] High A A, Devlin R C, Dibos A, Polking M, Wild D S, Perczel J, de Leon N P, Lukin M D and Park H 2015 Nature 522 192 [47] Bao Y J, Jiang Q, Kang Y M, Zhu X and Fang Z Y 2017 Light-Sci. Appl. 6 e17071 [48] Jiang Q, Bao Y J, Lin F, Zhu X, Zhang S and Fang Z Y 2018 Adv. Funct. Mater. 28 1705503 [49] Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N and Tsai D P 2017 Nat. Commun. 8 187 [50] Sun S L, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S Y, Kung W T, Guo G Y, Zhou L and Tsai D P 2012 Nano Lett. 12 6223 [51] Li J Y and Ye L F 2023 Nanophotonics-Berlin 12 2189 [52] Li Z W, Liu C X, Rong X, Luo Y, Cheng H T, Zheng L H, Lin F, Shen B, Gong Y J, Zhang S and Fang Z Y 2018 Adv. Mater. 30 1801908 [53] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497 [54] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [55] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [56] Mak K F and Shan J 2016 Nat. Photonics 10 216 [57] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626 [58] Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W and Xu X D 2013 Nat. Commun. 4 1474 [59] Zhu Z Y, Cheng Y C and Schwingenschlogl U 2011 Phys. Rev. B 84 153402 [60] Li Z W, Xiao Y D, Gong Y J, Wang Z P, Kang Y M, Zu S, Ajayan P M, Nordlander P and Fang Z Y 2015 ACS Nano 9 10158 [61] Zhang L, Gogna R, Burg W, Tutuc E and Deng H 2018 Nat. Commun. 9 713 [62] Li B W, Zu S, Zhou J D, Jiang Q, Du B W, Shan H Y, Luo Y, Liu Z, Zhu X and Fang Z Y 2017 ACS Nano 11 9720 [63] Mak K F, He K L, Lee C, Lee G H, Hone J, Heinz T F and Shan J 2013 Nat. Mater. 12 207 [64] Lee B, Liu W J, Naylor C H, Park J, Malek S C, Berger J S, Johnson A T C and Agarwal R 2017 Nano Lett. 17 4541 [65] Cai T, Dutta S, Aghaeimeibodi S, Yang Z, Nah S, Fourkas J T and Waks E 2017 Nano Lett. 17 6564 [66] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 [67] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [68] Eginligil M, Cao B C, Wang Z L, Shen X N, Cong C X, Shang J Z, Soci C and Yu T 2015 Nat. Commun. 6 7636 [69] Kumar N, He J Q, He D W, Wang Y S and Zhao H 2014 Nanoscale 6 12690 [70] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [71] Gong S H, Alpeggiani F, Sciacca B, Garnett E C and Kuipers L 2018 Science 359 443 [72] Sun L Y, Wang C Y, Krasnok A, Choi J, Shi J W, Gomez-Diaz J S, Zepeda A, Gwo S, Shih C K, Alu A and Li X Q 2019 Nat. Photonics 13 180 [73] Yadav S N S, Chen P L, Liu C H and Yen T J 2023 Adv. Mater. Interfaces 10 2202403 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|