|
|
Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives |
Cheng-Zhou Zhang(张城洲)1 and Xiao-Qian Fu(付小倩)1,2,† |
1 School of Information Science and Engineering, University of Jinan, Jinan 250022, China; 2 Shandong Provincial Key Laboratory of Network based Intelligent Computing, University of Jinan, Jinan 250022, China |
|
|
Abstract Optoelectronic materials are essential for today's scientific and technological development, and machine learning provides new ideas and tools for their research. In this paper, we first summarize the development history of optoelectronic materials and how materials informatics drives the innovation and progress of optoelectronic materials and devices. Then, we introduce the development of machine learning and its general process in optoelectronic materials and describe the specific implementation methods. We focus on the cases of machine learning in several application scenarios of optoelectronic materials and devices, including the methods related to crystal structure, properties (defects, electronic structure) research, materials and devices optimization, material characterization, and process optimization. In summarizing the algorithms and feature representations used in different studies, it is noted that prior knowledge can improve optoelectronic materials design, research, and decision-making processes. Finally, the prospect of machine learning applications in optoelectronic materials is discussed, along with current challenges and future directions. This paper comprehensively describes the application value of machine learning in optoelectronic materials research and aims to provide reference and guidance for the continuous development of this field.
|
Received: 07 August 2023
Revised: 02 October 2023
Accepted manuscript online: 10 October 2023
|
PACS:
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61601198) and the University of Jinan PhD Foundation (Grant No.XBS1714). |
Corresponding Authors:
Xiao-Qian Fu
E-mail: ise_fuxq@ujn.edu.cn
|
Cite this article:
Cheng-Zhou Zhang(张城洲) and Xiao-Qian Fu(付小倩) Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives 2023 Chin. Phys. B 32 126103
|
[1] Xing Y, Xu Y, Wu Q, Wang G and Zhu M 2021 J. Mater. Chem. C 9 439 [2] Yan X, Zhen W L, Hu H J, Pi L, Zhang C J and Zhu W K 2021 Chin. Phys. Lett. 38 068103 [3] Alexander Schmidt M, Argyros A and Sorin F 2016 Adv. Opt. Mater. 4 13 [4] Wang D, Liu X, Fang S, Huang C, Kang Y, Yu H, Liu Z, Zhang H, Long R, Xiong Y, Lin Y, Yue Y, Ge B, Ng T K, Ooi B S, Mi Z, He J H and Sun H 2021 Nano Lett. 21 120 [5] Zhang Y, Huang P, Guo J, Shi R, Huang W, Shi Z, Wu L, Zhang F, Gao L, Li C, Zhang X, Xu J and Zhang H 2020 Adv. Mater. 32 2001082 [6] Tan Y J, Godaba H, Chen G, Tan S T M, Wan G, Li G, Lee P M, Cai Y, Li S, Shepherd R F, Ho J S and Tee B C K 2020 Nat. Mater. 19 182 [7] Tan S, Huang T, Yavuz I, et al. 2022 Nature 605 268 [8] Wang B H, Xing Y H, Dong S Y, Li J H, Han J, Tu H Y, Lei T, He W X, Zhang B S and Zeng Z M 2023 Chin. Phys. B 32 098504 [9] Liu Y, Zhao T, Ju W and Shi S 2017 J. Materiomics 3 159 [10] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [11] Alder B J and Wainwright T E 1959 J. Chem. Phys. 31 459 [12] Bonate P L 2001 Clin. Pharmacokinet 40 15 [13] Zhu L S and Zhao S J 2014 Chin. Phys. B 23 063601 [14] Zafar M, Ahmed S, Shakil M, Choudhary M A and Mahmood K 2015 Chin. Phys. B 24 076106 [15] Champagne A, Haber J B, Pokawanvit S, Qiu D Y, Biswas S, Atwater H A, Da Jornada F H and Neaton J B 2023 Nano Lett. 23 4274 [16] Lugli P and Ferry D K 1986 Phys. Rev. Lett. 56 1295 [17] Yang W, Li J, Huang Y and He B 2020 arXiv: 2010.03702 [33] Takahashi K and Takahashi L 2019 J. Phys. Chem. Lett. 10 283 [34] Ziletti A, Kumar D, Scheffler M and Ghiringhelli L M 2018 Nat. Commun. 9 2775 [35] Zhang L, Zhuang Z, Fang Q and Wang X 2022 Materials 16 334 [36] Imoto K, Nakai T, Ike T, Haruki K and Sato Y 2019 IEEE Trans. Semicond. Manufact. 32 455 [37] Piprek J 2021 Opt. Quantum Electron. 53 175 [38] Bassman Oftelie L, Rajak P, Kalia R K, Nakano A, Sha F, Sun J, Singh D J, Aykol M, Huck P, Persson K and Vashishta P 2018 NPJ Comput. Mater. 4 74 [39] Flores R A, Paolucci C, Winther K T, Jain A, Torres J A G, Aykol M, Montoya J, Bajdich M and Bligaard T 2020 Chem. Mater. 32 5854 [40] Vandermause J, Torrisi S B, Batzner S, Xie Y, Sun L, Kolpak A M and Kozinsky B 2020 NPJ Comput. Mater. 6 20 [41] Hu M, Zhang J, Matkovic L, Liu T and Yang X 2023 J. Appl. Clin. Med. Phys. 24 e13898 [42] Epps R W, Volk A A, Reyes K G and Abolhasani M 2021 Chem. Sci. 12 6025 [43] Deringer V L, Bernstein N, Csányi G, Ben Mahmoud C, Ceriotti M, Wilson M, Drabold D A and Elliott S R 2021 Nature 589 59 [44] Sauceda H E, Gálvez-González L E, Chmiela S, Paz-Borbón L O, Müller K R and Tkatchenko A 2022 Nat. Commun. 13 3733 [45] Song Y, Siriwardane E M D, Zhao Y and Hu J 2021 ACS Appl. Mater. Interfaces 13 53303 [46] Zuo T, Qi F, Yam C and Meng L 2022 Phys. Chem. Chem. Phys. 24 26948 [47] Chen J, Feng M, Zha C, Shao C, Zhang L and Wang L 2022 Surf. Interfaces 35 102470 [48] Yi lmaz B and Yi ldirim R 2021 Nano Energy 80 105546 [49] Masson J F, Biggins J S and Ringe E 2023 Nat. Nanotechnol. 18 111 [50] Matsuo Y, LeCun Y, Sahani M, Precup D, Silver D, Sugiyama M, Uchibe E and Morimoto J 2022 Neural Netw. 152 267 [51] Jordan M I and Mitchell T M 2015 Science 349 255 [52] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436 [53] Nadkarni P M, Ohno-Machado L and Chapman W W 2011 J. Am. Med. Inform. Assoc. 18 544 [54] Zhang X, Cheng R, Feng L and Jin Y 2023 IEEE Comput. Intell. Mag. 18 16 [55] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547 [56] Piccinotti D, MacDonald K F, Gregory S A, Youngs I and Zheludev N I 2021 Rep. Prog. Phys. 84 012401 [57] Schleder G R, Padilha A C M, Acosta C M, Costa M and Fazzio A 2019 J. Phys. Mater. 2 032001 [58] Choudhary K, DeCost B, Chen C, Jain A, Tavazza F, Cohn R, Park C W, Choudhary A, Agrawal A, Billinge S J L, Holm E, Ong S P and Wolverton C 2022 NPJ Comput. Mater. 8 59 [59] Golmohammadi M and Aryanpour M 2023 Mater. Today Commun. 35 105494 [60] Kadulkar S, Sherman Z M, Ganesan V and Truskett T M 2022 Annu. Rev. Chem. Biomol. 13 235 [61] Liu D Y, Xu L M, Lin X M, Wei X, Yu W J, Wang Y and Wei Z M 2022 Chip 1 100033 [62] Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quirós M, Serebryanaya N R, Moeck P, Downs R T and Le Bail A 2012 Nucleic Acids Res. 40 D420 [63] Zagorac D, Müller H, Ruehl S, Zagorac J and Rehme S 2019 J. Appl. Crystallogr. 52 918 [64] Curtarolo S, Setyawan W, Wang S, Xue J, Yang K, Taylor R H, Nelson L J, Hart G L W, Sanvito S, Buongiorno-Nardelli M, Mingo N and Levy O 2012 Comput. Mater. Sci. 58 227 [65] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G and Persson K A 2013 APL Mater. 1 011002 [66] Draxl C and Scheffler M 2019 J. Phys. Mater. 2 036001 [67] Landis D D, Hummelshoj J S, Nestorov S, Greeley J, Dulak M, Bligaard T, Norskov J K and Jacobsen K W 2012 Comput. Sci. Eng. 14 51 [68] Wilkinson M D, Dumontier M, Aalbersberg I J, et al. 2016 Sci. Data 3 160018 [69] Lyngdoh G A, Zaki M, Krishnan N M A and Das S 2022 Cem. Concr. Compos. 128 104414 [70] Magar R and Barati Farimani A 2023 Comput. Mater. Sci. 224 112167 [71] Yoo J and Kang S 2023 IEEE Access 11 26393 [72] Marukatat S 2023 Artif. Intell. Rev. 56 5445 [73] Rausch J R and Kelley K 2009 Behav. Res. Methods 41 85 [74] Potapov P and Lubk A 2019 Adv. Struct. Chem. Imag. 5 4 [75] Wang J, Xu P, Ji X, Li M and Lu W 2023 Materials 16 3134 [76] Bejani M M and Ghatee M 2021 Artif. Intell. Rev. 54 6391 [77] Rupp M, Tkatchenko A, Müller K R and Von Lilienfeld O A 2012 Phys. Rev. Lett. 108 058301 [78] Zhang K, Yin L and Liu G 2021 Comput. Mater. Sci. 186 110071 [79] Parsaeifard B, Sankar De D, Christensen A S, Faber F A, Kocer E, De S, Behler J, Anatole Von Lilienfeld O and Goedecker S 2021 Mach. Learn. Sci. Technol. 2 015018 [80] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403 [81] Zhang L, Han J, Wang H, Saidi W A and Car R 2012 arXiv: 1207.0580v1 [83] Agiorgousis M L, Sun Y Y, Choe D, West D and Zhang S 2019 Adv. Theory Simul. 2 1800173 [84] Wang A Y T, Murdock R J, Kauwe S K, Oliynyk A O, Gurlo A, Brgoch J, Persson K A and Sparks T D 2020 Chem. Mater. 32 4954 [85] Fang J, Xie M, He X, Zhang J, Hu J, Chen Y, Yang Y and Jin Q 2022 Mater. Today Commun. 33 104900 [86] Wei J, Chu X, Sun X, Xu K, Deng H, Chen J, Wei Z and Lei M 2019 InfoMat 1 338 [87] Chen A, Zhang X and Zhou Z 2020 InfoMat 2 553 [88] Xiong Z, Cui Y, Liu Z, Zhao Y, Hu M and Hu J 2020 Comput. Mater. Sci. 171 109203 [89] Pant D, Pokharel S, Mandal S, Kc D B and Pati R 2023 Sci. Rep. 13 3277 [90] Banko L, Maffettone P M, Naujoks D, Olds D and Ludwig A 2021 NPJ Comput. Mater. 7 104 [91] Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y and Buonassisi T 2022 Matter 5 314 [92] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301 [93] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chem. Mater. 31 3564 [94] Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D and Barati Farimani A 2020 Phys. Rev. Mater. 4 093801 [95] Park C W and Wolverton C 2020 Phys. Rev. Mater. 4 063801 [96] Choudhary K and DeCost B 2021 NPJ Comput. Mater. 7 185 [97] Lee J and Asahi R 2021 Comput. Mater. Sci. 190 110314 [98] Wang B, Fan Q and Yue Y 2022 J. Phys. Condens. Matter 34 195901 [200] Liu Y H, Wang W, Xiao F, Xiong L B and Ming X 2021 Chin. Phys. B 30 108102 [99] Zhu Z, Dong B, Guo H, Yang T and Zhang Z 2020 Chin. Phys. B 29 046101 [100] Huang Y, Yu C, Chen W, Liu Y, Li C, Niu C, Wang F and Jia Y 2019 J. Mater. Chem. C 7 3238 [101] Zhuo Y, Mansouri Tehrani A and Brgoch J 2018 J. Phys. Chem. Lett. 9 1668 [102] Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q and Wang J 2018 Nat. Commun. 9 3405 [103] Im J, Lee S, Ko T W, Kim H W, Hyon Y and Chang H 2019 NPJ Comput. Mater. 5 37 [104] Ma X Y, Lewis J P, Yan Q B and Su G 2019 J. Phys. Chem. Lett. 10 6734 [105] Allam O, Holmes C, Greenberg Z, Kim K C and Jang S S 2018 Chemphyschem 19 2559 [106] Choubisa H, Todorović P, Pina J M, Parmar D H, Li Z, Voznyy O, Tamblyn I and Sargent E H 2023 NPJ Comput. Mater. 9 117 [107] Zhang Y and Xu X 2020 Optik 217 164808 [108] Da Silva Macedo G, De Sousa Dias M R and Bezerra A T 2023 Physica E 146 115513 [109] Boccard M and Holman Z C 2015 J. Appl. Phys. 118 065704 [110] Heremans P, Tripathi A K, De Jamblinne De Meux A, Smits E C P, Hou B, Pourtois G and Gelinck G H 2016 Adv. Mater. 28 4266 [111] Varley J B, Samanta A and Lordi V 2017 J. Phys. Chem. Lett. 8 5059 [112] Mannodi-Kanakkithodi A, Toriyama M Y, Sen F G, Davis M J, Klie R F and Chan M K Y 2020 NPJ Comput. Mater. 6 39 [113] Frey N C, Akinwande D, Jariwala D and Shenoy V B 2020 ACS Nano 14 13406 [114] Wang B, Chu W, Wu Y, Casanova D, Saidi W A and Prezhdo O V 2022 J. Phys. Chem. Lett. 13 5946 [115] Liu D, Wu Y, Vasenko A S and Prezhdo O V 2023 Nanoscale 15 285 [116] Glasmann A, Kyrtsos A and Bellotti E 2021 Mach. Learn. Sci. Technol. 2 025006 [117] Ramadhan R A A, Heatubun Y R J, Tan S F and Lee H J 2021 Renew. Energ. 178 1006 [118] Wasmer S, Hübener K and Klöter B 2022 Sol. RRL 6 2100477 [119] Jiang Q F, Lian J, Ying M J, Wei M Y, Wang C L and Zhang Y 2021 Chin. Phys. B 30 097801 [201] Qian D D, Liu L, Xing Z X, Dong R, Wu L, Cai H K, Kong Y F, Zhang Y and Xu J J 2021 Chin. Phys. Lett. 38 087801 [120] Li X, Hou Z, Gao S, Zeng Y, Ao J, Zhou Z, Da B, Liu W, Sun Y and Zhang Y 2018 Sol. RRL 2 1800198 [121] Grau-Luque E, Anefnaf I, Benhaddou N, Fonoll-Rubio R, Becerril-Romero I, Aazou S, Saucedo E, Sekkat Z, Perez-Rodriguez A, Izquierdo-Roca V and Guc M 2021 J. Mater. Chem. A 9 10466 [122] Zhang L, Li N, Liu D, Tao G, Xu W, Li M, Chu Y, Cao C, Lu F, Hao C, Zhang J, Cao Y, Gao F, Wang N, Zhu L, Huang W and Wang J 2022 Angew. Chem. Int. Ed. 61 e202209337 [123] Anshul A, Nitish K and Pawan D 2022 Indian J. Pure Appl. Phys. 60 892 [124] Wang X L, Chen Y, Chu Y, Liu W J, Zhang D W, Ding S J and Wu X 2022 ACS Appl. Mater. Interfaces 14 14455 [125] Stern M L and Schellenberger M 2021 J. Intell. Manuf. 32 113 [126] Vakharia V, Shah M, Suthar V, Patel V K and Solanki A 2023 Phys. Scr. 98 025203 [127] Chen T, Li J, Cai P, Yao Q, Ren Z, Zhu Y, Khan S, Xie J and Wang X 2023 Nano Res. 16 4188 [128] Wang C, Zou Q, Cheng Z, Chen J, Luo C, Liang F, Cai C, Bi H, Lian X, Ji X, Zhang Q, Sun L and Wu X 2022 Nanotechnology 33 085302 [129] Srivastava M, Howard J M, Gong T, Rebello Sousa Dias M and Leite M S 2021 J. Phys. Chem. Lett. 12 7866 [202] Huang D M, Zhang J Y, Wang J H, Wei W Q, Wang Z H, Wang T and Zhang J J 2021 Chin. Phys. Lett. 38 068101 [203] Xu Y, Wang J, Cao B and Xu K 2022 Chin. Phys. B 31 117702 [130] Miyagawa S, Gotoh K, Kutsukake K, Kurokawa Y and Usami N 2021 Appl. Phys. Express 14 025503 [131] Wei L, Xu X, Gurudayal, Bullock J and Ager J W 2019 Chem. Mater. 31 7340 [132] Jin Z, Lim D D, Zhao X, Mamunuru M, Roham S and Gu G X 2023 J. Intell. Manuf. 1 [133] Zhu D, Schubert M F, Cho J, Schubert E F, Crawford M H, Koleske D D, Shim H and Sone C 2012 Appl. Phys. Express 5 012102 [134] Patra T K, Zhang F, Schulman D S, Chan H, Cherukara M J, Terrones M, Das S, Narayanan B and Sankaranarayanan S K R S 2018 ACS Nano 12 8006 [135] Fiedler L, Modine N A, Schmerler S, Vogel D J, Popoola G A, Thompson A P, Rajamanickam S and Cangi A 2023 NPJ Comput. Mater. 9 115 [136] Kong S, Ricci F, Guevarra D, Neaton J B, Gomes C P and Gregoire J M 2022 Nat. Commun. 13 949 [137] Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova O, Persson K A, Ceder G and Jain A 2019 Nature 571 95 [138] Zuo Y, Chen C, Li X, Deng Z, Chen Y, Behler J, Csányi G, Shapeev A V, Thompson A P, Wood M A and Ong S P 2020 J. Phys. Chem. A 124 731 [139] Pei Z, Rozman K A, Doǧan Ö N, Wen Y, Gao N, Holm E A, Hawk J A, Alman D E and Gao M C 2021 Adv. Sci. 8 2101207 [140] Choudhary K, Garrity K F, Reid A C E, et al. 2020 NPJ Comput. Mater. 6 173 [141] Yang X S 2012 Int. J. Artif. Intell. Tools 21 1240010 [142] Chang C, Deringer V L, Katti K S, Van Speybroeck V and Wolverton C M 2023 Nat. Rev. Mater. 8 309 [143] Abolhasani M and Kumacheva E 2023 Nat. Synthesis 2 483 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|