Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 054702    DOI: 10.1088/1674-1056/acb1ff
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Three-dimensional color particle image velocimetry based on a cross-correlation and optical flow method

Liang Shan(单良)1,†, Jun-Zhe Xiong(熊俊哲)1,†, Fei-Yang Shi(施飞杨)1, Bo Hong(洪波)1, Juan Jian(简娟)1, Hong-Hui Zhan(詹虹晖)1, and Ming Kong(孔明)2,‡
1 Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China;
2 College of Metrology&Measurement Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  Rainbow particle image velocimetry (PIV) can restore the three-dimensional velocity field of particles with a single camera; however, it requires a relatively long time to complete the reconstruction. This paper proposes a hybrid algorithm that combines the fast Fourier transform (FFT) based co-correlation algorithm and the Horn-Schunck (HS) optical flow pyramid iterative algorithm to increase the reconstruction speed. The Rankine vortex simulation experiment was performed, in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method. The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm; nevertheless, the reconstruction time was 20% shorter. Furthermore, the effect of velocity magnitude and particle density on the reconstruction results was analyzed. In the end, the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets, from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm. The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25% faster than that of the rainbow PIV algorithm.
Keywords:  particle image velocimetry      color light      cross-correlation and optical flow method      vortex  
Received:  05 September 2022      Revised:  02 December 2022      Accepted manuscript online:  11 January 2023
PACS:  47.80.Cb (Velocity measurements)  
  47.54.De (Experimental aspects)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51874264 and 52076200).
Corresponding Authors:  Ming Kong     E-mail:  mkong@cjlu.edu.cn

Cite this article: 

Liang Shan(单良), Jun-Zhe Xiong(熊俊哲), Fei-Yang Shi(施飞杨), Bo Hong(洪波), Juan Jian(简娟), Hong-Hui Zhan(詹虹晖), and Ming Kong(孔明) Three-dimensional color particle image velocimetry based on a cross-correlation and optical flow method 2023 Chin. Phys. B 32 054702

[1] De León-Ruiz J E, Carvajal-Mariscal I, De La Cruz-ávila M, Klapp J and Guzmán J E V 2022 Meas. Sci. Technol. 33 075406
[2] Zhang J H, Li B H, Wang Y F and Jiang N 2022 Chin. Phys. B 31 074702
[3] Schlatter P and Örlü R 2010 J. Fluid Mech. 659 116
[4] Etminan A, Muzychka Y S, Pope K and Baafour N K 2022 Meas. Sci. Technol. 33 092002
[5] Lawson N J, Finnis M V, Tatum J A and Harrison G M 2005 J. Visualization 8 261
[6] Kahler C J and Kompenhans J 2000 Exp. Fluids 29 S070
[7] Soloff S M, Adrian R J and Liu Z C 1997 Meas. Sci. Technol. 8 1441
[8] Scarano F 2013 Meas. Sci. Technol. 24 012001
[9] Yu T and Cai W W 2019 Appl. Phys. Lett. 115 104104
[10] Zhang J Q, Qi H, Ji Y K, Ren Y T, He M J, Su M X and Cai X S 2022 IEEE Trans. Instrum. Meas. 71 4500214
[11] Prasad A K 2000 Exp. Fluids 29 103
[12] Calluaud D and David L 2004 Exp. Fluids 36 53
[13] Van Doorne C W H and Westerweel J 2007 Exp. Fluids 42 259
[14] Elsinga G E, Scarano F, Wieneke B and Van Oudheusden 2006 Exp. Fluids 41 933
[15] De Silva C M, Baidya R and Marusic I 2013 Meas. Sci. Technol. 24 024010
[16] Qu Q W, Cao Z, Xu L J, Liu C, Chang L Y and McCann H 2019 Appl. Opt. 58 205
[17] Zhang J Q, Qi H, Jiang D H, He M J, Ren Y T, Su M X and Cai X S 2021 Measurement 175 109107
[18] Xiong J, Aguirre-Pablo A A, Idoughi R, Thoroddsen S T and Heidrich W 2021 Meas. Sci. Technol. 32 025401
[19] Zhu X Y, Zhang B, Li J and Xu C L 2020 Opt. Commun. 462 125263
[20] Zhu X Y, Wu Z, Li J Zhang B and Xu C L 2021 Opt. Lasers Eng. 143 106625
[21] Overbrueggen T, Klaas M, Bahl B and Schroeder W 2015 SAE Int. J. Engines 8 1447
[22] Xiong J, Idoughi R, Aguirre-Pablo A A, Aljedaani A B, Dun X, Fu Q, Thoroddsen S T and Heidrich W 2017 ACM Trans. Graph. 36 1
[23] Barbu I and Herzet C 2016 Meas. Sci. Technol. 27 104002
[24] Zhang J Q, Qi H, Ren Y T, Su M X and Cai X S 2022 Int. J. Heat Mass Tran 188 122660
[25] Glowinski R and Marroco A 1975 R. A. I. R. O. Analyse Numérique 9 41
[26] Boyd S, Parikh N, Chu E, Peleato B and Eckstein J 2011 Foundations and Trends in Machine Learning 3 1
[27] Ruhnau P and Schnörr C 2007 Exp. Fluids 42 61
[28] Cai S Z, Xu C, Gao Q and Wei R J 2019 Acta Aerodyn. Sin. 37 455
[1] Discrete vortex bound states with a van Hove singularity in the vicinity of the Fermi level
Delong Fang(方德龙) and Yunkang Cui(崔云康). Chin. Phys. B, 2023, 32(5): 057401.
[2] Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase
Aotian Wang(王傲天), Lianghong Yu(於亮红), Jinfeng Li(李进峰), and Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2023, 32(4): 044201.
[3] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[4] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[7] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[8] Influence of Dzyaloshinskii-Moriya interaction on the magnetic vortex reversal in an off-centered nanocontact geometry
Hua-Nan Li(李化南), Tong-Xin Xue(薛彤鑫), Lei Chen(陈磊), Ying-Rui Sui(隋瑛瑞), and Mao-Bin Wei(魏茂彬). Chin. Phys. B, 2022, 31(9): 097501.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[11] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[12] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[15] Particle captured by a field-modulating vortex through dielectrophoresis force
Bing Yan(严兵), Bo Chen(陈波), Zerui Peng(彭泽瑞), and Yong-Liang Xiong(熊永亮). Chin. Phys. B, 2022, 31(3): 034703.
No Suggested Reading articles found!