Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120401    DOI: 10.1088/1674-1056/acf703
GENERAL Prev   Next  

Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients

Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏)
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
Abstract  This article presents the construction of a nonlocal Hirota equation with variable coefficients and its Darboux transformation. Using zero-seed solutions, 1-soliton and 2-soliton solutions of the equation are constructed through the Darboux transformation, along with the expression for N-soliton solutions. Influence of coefficients that are taken as a function of time instead of a constant, i.e., coefficient function δ(t), on the solutions is investigated by choosing the coefficient function δ(t), and the dynamics of the solutions are analyzed. This article utilizes the Lax pair to construct infinite conservation laws and extends it to nonlocal equations. The study of infinite conservation laws for nonlocal equations holds significant implications for the integrability of nonlocal equations.
Keywords:  infinite conservation laws      nonlocal Hirota equation with variable coefficient      soliton solutions      Darboux transformation  
Received:  22 June 2023      Revised:  05 September 2023      Accepted manuscript online:  06 September 2023
PACS:  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11505090), Liaocheng University Level Science and Technology Research Fund (Grant No.318012018), Discipline with Strong Characteristics of Liaocheng University--Intelligent Science and Technology (Grant No.319462208), Research Award Foundation for Outstanding Young Scientists of Shandong Province (Grant No.BS2015SF009), and the Doctoral Foundation of Liaocheng University (Grant No.318051413).
Corresponding Authors:  Xiangpeng Xin     E-mail:  xinxiangpeng@lcu.edu.cn

Cite this article: 

Jinzhou Liu(刘锦洲), Xinying Yan(闫鑫颖), Meng Jin(金梦), and Xiangpeng Xin(辛祥鹏) Darboux transformation, infinite conservation laws, and exact solutions for the nonlocal Hirota equation with variable coefficients 2023 Chin. Phys. B 32 120401

[1] Yin Y H, Ma W X, Liu J G and Lü X 2018 Comput. Appl. Math. 76 1275
[2] Zhou Q, Triki H, Xu J, Zeng Z L, Liu W J and Biswas A 2022 Chaos, Solitons & Fractals 160 112198
[3] Kumar S, Kumar D and Kumar A 2021 Chaos, Solitons & Fractals 142 110507
[4] McDonald A and Clerk A A 2022 Phys. Rev. Lett. 128 033602
[5] Chen Y X and Xiao X 2022 Nonlinear Dyn. 109 2003
[6] Xin X, Zhang L, Xia Y and Liu H 2019 Appl. Math. Lett. 94 112
[7] Guan X, Liu W, Zhou Q and Biswas A 2019 Nonlinear Dyn. 98 1491
[8] Wang R R, Wang Y Y and Dai C Q 2022 Opt. Laser Technol. 152 108103
[9] Geng K L, Zhu B W, Cao Q H, Dai C Q and Wang Y Y 2023 Nonlinear Dyn. 111 16483
[10] Zhao Z and He L 2021 Appl. Math. Lett. 111 106612
[11] Chen J, Yan Q and Zhang H 2020 Appl. Math. Lett. 106 106375
[12] Ali M R, Ma W X and Sadat R 2022 Ocean. Eng Sci. 7 248
[13] Yang Y and Fan E 2021 Physica D 417 132811
[14] Zhang X F, Tian S F and Yang J J 2021 Anal. Math. Phys. 11 1
[15] Wen X K, Jiang J H, Liu W and Dai C Q 2023 Nonlinear Dyn. 111 13343
[16] Wu X H, Gao Y T, Yu X, Ding C and Li L 2022 Chaos, Solitons & Fractals 162 112399
[17] Zhai Y, Ji T and Geng X 2021 Appl. Math. Comput. 411 126551
[18] Xin X P, Liu Y T, Xia Y R and Liu H Z 2021 Appl. Math. Lett. 119 107209
[19] Wang M, Tian B, Hu C C and Liu S 2021 Appl. Math. Lett. 119 106936
[20] Li B Q and Ma Y L 2020 Appl. Math. Comput. 386 125469
[21] Yang D Y, Tian B, Qu Q X, Zhang C, Chen S and Wei C 2021 Chaos, Solitons & Fractals 150 110487
[22] Jia T T, Gao Y T, Yu X and Li L 2021 Appl. Math. Lett. 114 106702
[23] Liu L, Wang D S, Han K and Wen X 2018 Commun. Nonlinear Sci. 63 57
[24] Liu L, Wen X Y and Wang D S 2019 Appl. Math. Model. 67 201
[25] Chen J, Ma Z and Hu Y 2018 J. MATH. ANAL. APPL. 460 987
[26] Li B Q and Ma Y L 2020 Appl. Math. Comput. 386 125469
[27] Yang Y, Suzuki T and Cheng X 2020 Appl. Math. Lett. 99 105998
[28] Zhang Y, Dong K and Jin R 2013 Am. J. Phys. 1562 249
[29] Liu J G and Zhu W H 2020 Nonlinear Dyn. 100 2739
[30] Hong B and Lu D 2012 Appl. Math. Comput. 219 2732
[31] Kaur J, Gupta R K and Kumar S 2020 Commun. Nonlinear Sci. 83 105108
[1] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[2] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[3] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[4] Riemann-Hilbert approach of the complex Sharma-Tasso-Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[5] Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair
Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2023, 32(12): 120203.
[6] Rational solutions of Painlevé-II equation as Gram determinant
Xiaoen Zhang(张晓恩) and Bing-Ying Lu(陆冰滢). Chin. Phys. B, 2023, 32(12): 120205.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[9] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[10] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[11] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[12] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[13] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[14] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[15] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
No Suggested Reading articles found!