Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120203    DOI: 10.1088/1674-1056/acf122
GENERAL Prev   Next  

Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair

Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永)
School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
Abstract  Under consideration in this study is the discrete coupled modified Korteweg-de Vries (mKdV) equation with 4×4 Lax pair. Firstly, through using continuous limit technique, this discrete equation can be mapped to the coupled KdV and mKdV equations, which may depict the development of shallow water waves, the optical soliton propagation in cubic nonlinear media and the Alfven wave in a cold collision-free plasma. Secondly, the discrete generalized (r, N-r)-fold Darboux transformation is constructed and extended to solve this discrete coupled equation with the fourth-order linear spectral problem, from which diverse exact solutions including usual multi-soliton and semi-rational soliton solutions on the vanishing background, higher-order rational soliton and mixed hyperbolic-rational soliton solutions on the non-vanishing background are derived, and the limit states of some soliton and rational soliton solutions are analyzed by the asymptotic analysis technique. Finally, the numerical simulations are used to explore the dynamical behaviors of some exact soliton solutions. These results may be helpful for understanding some physical phenomena in fields of shallow water wave, optics, and plasma physics.
Keywords:  discrete coupled mKdV equation      continuous limit      discrete generalized (r,N-r)-fold Darboux transformation      multi-soliton solutions      rational soliton solutions  
Received:  22 July 2023      Revised:  08 August 2023      Accepted manuscript online:  17 August 2023
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  04.60.Nc (Lattice and discrete methods)  
Fund: We would like to express our sincere thanks to other members of our discussion group for their valuable comments.Project supported by the National Natural Science Foundation of China (Grant No.12071042) and Beijing Natural Science Foundation (Grant No.1202006).
Corresponding Authors:  Xiao-Yong Wen     E-mail:  xiaoyongwen@163.com

Cite this article: 

Xue-Ke Liu(刘雪珂) and Xiao-Yong Wen(闻小永) Diverse soliton solutions and dynamical analysis of the discrete coupled mKdV equation with 4×4 Lax pair 2023 Chin. Phys. B 32 120203

[1] Wadati M 1976 Prog. Theor. Phys. Suppl. 59 36
[2] Song Y, Shi X, Wu C, Tang D and Zhang H 2019 Appl. Phys. Rev. 6 021313
[3] Harvey P, Durniak C, Samsonov D and Morfill G 2010 Phys. Rev. E 81 057401
[4] Gibbon J D and Eilbeck J C 1972 J. Phys. A: Gen. Phys. 5 L122
[5] Faddeev L D and Korepin V E 1978 Phys. Rep. 42 1
[6] Ablowitz M J, Prinari B and Trubatch A D 2004 Discrete and Continuous Nonlinear Schrödinger Systems (New York: Cambridge University Press)
[7] Ablowitz M J 1977 SIAM. Rev. 19 663
[8] Toda M 1989 Theory of Nonlinear Lattices (Berlin: Springer)
[9] Hirota R 1973 J. Phys. Soc. Jpn. 35 286
[10] Suris Y B 2003 The Problem of Integrable Discretization: Hamiltonian Approach (Basel: Birkhä Verlag)
[11] Yuan C L and Wen X Y 2021 Chin. Phys. B 30 030201
[12] Ablowitz M J and Ladik J F 1977 Stud. Appl. Math. 57 1
[13] Tsuchida T, Ujino H and Wadati M 1998 J. Math. Phys. 39 4785
[14] Zhu Z N, Zhao H Q and Wu X N 2011 J. Math. Phys. 52 043508
[15] Sahadevan R and Balakrishnan S 2009 J. Phys. A: Math. Theor. 42 415208
[16] Wen X Y and Hu X Y 2014 Adv. Differ. Equ. 213 1
[17] Leblond H and Mihalache D 2011 Rom. Rep. Phys. 63 1254
[18] Ankiewicz A and Akhmediev N 2018 Nonlinear Dyn. 91 1931
[19] Kakutani T and Ono H 1969 J. Phys. Soc. Jpn. 26 1305
[20] Ablowitz M J, Luo X D and Musslimani Z H 2020 Nonlinearity 33 3653
[21] Prinari B 2016 J. Math. Phys. 57 083510
[22] Chen M, Fan E and He J 2023 Chaos Soliton. Fract. 168 113209
[23] Chen M and Fan E 2022 Stud. Appl. Math. 148 1180
[24] Geng X G, Dai H H and Cao C W 2003 J. Math. Phys. 44 4573
[25] Wen X Y 2011 Rep. Math. Phys. 68 211
[26] Xu T, Chen Y and Lin J 2017 Chin. Phys. B 26 120201
[27] Wen X Y, Yan Z and Malomed B A 2016 Chaos 26 123110
[28] Wen X Y, Liu Y and Yan Z 2015 Phys. Rev. E 92 012917
[29] Cui X Q, Zhang B J and Wen X Y 2023 Chin. J. Phys. 82 95
[30] Wen X Y 2016 Commun. Theor. Phys. 66 29
[31] Wen X Y and Wang H T 2021 Appl. Math. Lett. 111 106683
[32] Wang H T and Wen X Y 2019 Pramana-J. Phys. 92 1
[33] Liu N, Wen X Y and Wang D S 2022 Math. Meth. Appl. Sci. 45 9396
[34] Wen X Y and Yuan C L 2022 Appl. Math. Lett. 123 107591
[35] Liu P, Jia M and Lou S Y 2007 Phys. Scr. 76 674
[36] Lou S Y, Tong B, Hu H and Tang X 2006 J. Phys. A: Math. Gen. 39 513
[37] Wang D S 2010 Nonlinear Anal. 73 270
[38] Korteweg D J and deVries G 1895 Phil. Mag. 39 422
[39] Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
[40] Trefethen L N 2000 Spectral Methods in MATLAB (Philadelphia: SIAM)
[1] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[2] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[3] Existences and stabilities of bright and dark breathers in a general one-dimensional discrete monatomic Chain
Xu Quan(徐权), Tang Feng-Yun(汤凤云), and Tian Qiang(田强). Chin. Phys. B, 2008, 17(4): 1331-1340.
[4] Discrete doubly periodic and solitary wave solutions for the semi-discrete coupled mKdV equations
Wu Xiao-Fei(吴晓飞), Zhu Jia-Min(朱加民), and Ma Zheng-Yi(马正义). Chin. Phys. B, 2007, 16(8): 2159-2166.
No Suggested Reading articles found!