Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050503    DOI: 10.1088/1674-1056/ac833d
GENERAL Prev   Next  

Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation

Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨)
School of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract  We investigate the coupled modified nonlinear Schrödinger equation. Breather solutions are constructed through the traditional Darboux transformation with nonzero plane-wave solutions. To obtain the higher-order localized wave solution, the N-fold generalized Darboux transformation is given. Under the condition that the characteristic equation admits a double-root, we present the expression of the first-order interactional solution. Then we graphically analyze the dynamics of the breather and rogue wave. Due to the simultaneous existence of nonlinear and self-steepening terms in the equation, different profiles in two components for the breathers are presented.
Keywords:  coupled modified nonlinear Schrödinger equation      Darboux transformation      breather      rouge wave  
Received:  17 May 2022      Revised:  18 July 2022      Accepted manuscript online:  22 July 2022
PACS:  05.45.Yv (Solitons)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  04.20.Jb (Exact solutions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11871232 and 12201578) and Natural Science Foundation of Henan Province, China (Grant Nos. 222300420377 and 212300410417).
Corresponding Authors:  Guoliang He     E-mail:  glhemath@163.com

Cite this article: 

Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨) Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation 2023 Chin. Phys. B 32 050503

[1] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge)
[2] Hasegawa A and Matsumoto M 2003 Optical Solitons in Fibers (Springer, Berlin)
[3] Lonngren K E 1983 Plasma Phys. 25 943
[4] Li L, Li Z D, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[5] Feng Y Y and Bilige S D 2021 Nonlinear Dyn. 106 879
[6] Li L X 2022 Nonlinear Dyn. 107 3779
[7] Wang L, Zhang J H, Wang Z Q, Liu C, Li M, Qi F H and Guo R 2016 Phys. Rev. E 93 012214
[8] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[9] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[10] Liu S Z, Wang J and Zhang D J 2022 Stud. Appl. Math. 148 651
[11] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[12] Xue B, Shen J and Geng X G 2020 Phys. Scr. 95 055216
[13] Wu Q L and Zhang H Q 2022 Wave Motion 110 102890
[14] Xu S W, He J S and Wang L H 2011 J. Phys. A: Math. Theor. 44 305203
[15] Du Z, Tian B, Qu Q X and Zhao X H 2020 Chin. Phys. B 29 030202
[16] Li M, Wang B T, Xu T and Shui J J 2020 Acta Phys. Sin. 69 010502 (in Chinese)
[17] Chen S H and Song L Y 2013 Phys. Rev. E 87 032910
[18] Liu C and Akhmediev N 2019 Phys. Rev. E 100 062201
[19] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[20] Liu C, Wu Y H, Chen S C, Yao X K and Akhmediev N 2021 Phys. Rev. Lett. 127 094102
[21] Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic)
[22] Zhang H Q, Tian B, Lü X, Li H and Meng X H 2009 Phys. Lett. A 373 4315
[23] Zhang H Q 2012 Z. Naturforsch. A 67 711
[24] Li M, Tian B, Liu W J, Jiang Y and Sun K 2010 Eur. Phys. J. D 59 279
[25] Hang C, Wu Q L and Zhang H Q 2021 Mod. Phys. Lett. B 35 2150373
[26] Yan X W 2020 Appl. Math. Lett. 107 106414
[27] Morris H C and Dodd R K 1979 Phys. Scr. 20 505
[28] Ling L L and Liu Q P 2010 J. Phys. A: Math. Theor. 43 434023
[29] Xu T and He G L 2020 Nonlinear Dyn. 100 2823
[30] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[31] Guo B L and Ling L L 2011 Chin. Phys. Lett. 28 110202
[32] Wang X, Yang B, Chen Y and Yang Y Q 2014 Chin. Phys. Lett. 31 090201
[33] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[34] Priya N V, Senthilvelan M and Lakshmanan M 2013 Phys. Rev. E 88 022918
[35] Chen S C, Liu C, Yao X K, Zhao L C and Akhmediev N 2021 Phys. Rev. E 104 024215
[36] Liu C, Chen S C, Yao X K and Akhmediev N 2022 Physica D 433 133192
[37] Che W J, Chen S C, Liu C, Zhao L C and Akhmediev N 2022 Phys. Rev. A 105 043526
[38] Zhang G Q, Yan Z Y, Wen X Y and Chen Y 2017 Phys. Rev. E 95 042201
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[4] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[5] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[6] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[7] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[8] Breather solutions of modified Benjamin-Bona-Mahony equation
G T Adamashvili. Chin. Phys. B, 2021, 30(2): 020503.
[9] Interaction region of magnon-mediated spin torques and novel magnetic states
Zai-Dong Li(李再东), Qi-Qi Guo(郭奇奇), Yong Guo(郭永), Peng-Bin He(贺鹏斌), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(10): 107506.
[10] Breathers and solitons for the coupled nonlinear Schrödinger system in three-spine α-helical protein
Xiao-Min Wang(王晓敏) and Peng-Fei Li(李鹏飞). Chin. Phys. B, 2021, 30(10): 100509.
[11] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[12] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[13] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[14] Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Yang-yang Wang(王洋洋), Peng-Bin He(贺鹏斌). Chin. Phys. B, 2019, 28(1): 010504.
[15] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
No Suggested Reading articles found!