Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120402    DOI: 10.1088/1674-1056/acd620
GENERAL Prev   Next  

The Reissner-Nordström black hole surrounded by quintessence may not be destroyed

Hao Tang(唐浩)1,2,† and Jia Zhang(张甲)2,‡
1 Shaanxi Engineering Research Center of Controllable Neutron Source, Xijing University, Xi'an 710123, China;
2 School of Physics and Electrical Engineering, Weinan Normal University, Weinan 714099, China
Abstract  In the study of weak cosmic censorship conjectures (WCCC), some research finds that the Reissner-Nordström black hole might be destroyed by a test particle with particular mass and charge under some conditions, which means that the naked singularity of the black hole could be observed. This is not allowed in WCCC. We have never observed such naked singularities which should not exist in theory, so we need to find a proper way to protect the black hole from being destroyed by such particles. In this paper, we study a Reissner-Nordström black hole that is surrounded by quintessence (RN-Q) and find that the black hole would be stable and safe because of the effective potential barrier induced by the quintessence term. This result may also show in a sense that the quintessence might have more potential value.
Keywords:  weak cosmic censorship conjectures (WCCC)      black hole      quintessence      naked singularity  
Received:  29 December 2022      Revised:  27 March 2023      Accepted manuscript online:  17 May 2023
PACS:  04.70.Bw (Classical black holes)  
  04.20.Dw (Singularities and cosmic censorship)  
  97.60.Lf (Black holes)  
Fund: We thank Dr. Bin Wu and Dr. Cheng-yi Sun for useful comments and enlightening discussions. This work was supported by Foundation Research Project of Shaanxi Province in Natural Science (Grant No.2019JQ-919), Special Project of Education Department of Shaanxi Province in Natural Science (Grant No.20JK0635), and Talent Foundation of Weinan Normal University (Grant No.201120039).
Corresponding Authors:  Hao Tang, Jia Zhang     E-mail:  taho@vip.163.com;zhangjia1001@sina.com

Cite this article: 

Hao Tang(唐浩) and Jia Zhang(张甲) The Reissner-Nordström black hole surrounded by quintessence may not be destroyed 2023 Chin. Phys. B 32 120402

[1] Penrose R 1969 Nuovo Cimento Rivista Serie 1 252
[2] Hooft G 1985 Nuclear Physics B 256 727
[3] Wald R M 1974 Annals of Physics 82 548
[4] Beesham A and Ghosh S G 2003 International Journal of Modern Physics D 12 801
[5] Saa A and Santarelli R 2011 Phys. Rev. D 84 027501
[6] Chen D 2020 Chin. Phys. C 44 126
[7] Siahaan H M 2016 Phys. Rev. D 93 064028
[8] Gao S and Zhang Y 2013 Phys. Rev. D 87 044028
[9] Jacobson T and Sotiriou T P 2009 Phys. Rev. Lett. 103 141101
[10] Ali M S, El Moumni H, Khalloufi J and Masmar K 2023 J. High Energy Phys. 3 1
[11] Song Y, Tang H, et al. 2017 Chin. Phys. Lett. 34 030401
[12] Tang H, Yu Song, et al. 2017 Chin. Phys. Lett. 34 040401
[13] Jie J 2022 Nuclear Physics B 984 115963
[14] Ayyesha K A, Sanjar S and Bobomurat A 2022 Physics of the Dark Universe 37 101082
[15] Bogeun G 2022 J. Cosmol. and Astropart. Phys. 10 077
[16] Hubeny V 1999 Phys. Rev. D 59 064013
[17] Perlmutter S, et al. 1999 The Astrophysical Journal 517 565
[18] de Bernardis P, et al. 2000 Nature 404 955
[19] Spergel D N, et al. 2003 The Astrophysical Journal Supplement Series 148 175
[20] Miranda W, Carneiro S and Pigozzo C 2014 Journal of Cosmology and Astroparticle Physics 07 043
[21] Padmanabhan T 2002 Phys. Rev. D 66 021301
[22] Kofane T C, et al. 2012 General Relativity and Gravitation 44 2181
[23] Khoury J and Weltman A 2004 Phys. Rev. Lett. 93 171104
[24] Armendariz C, Mukhanov V and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438
[25] Padmanabhan T 2003 Physics Reports 380 235
[26] Caldwell R R 2002 Phys. Lett. B 545 23
[27] Gasperini M, Piassa M and Veneziano G 2002 Phys. Rev. D 65 023508
[28] Guo Z K, Piao Y S, et al. 2005 Phys. Lett. B 608 177
[29] Xia J Q, Zhao G B, et al. 2006 Phys. Rev. D 74 083521
[30] Saleh M and Bouetou B 2011 Astrophysics and Space Science 333 449
[31] Saleh M, Thomas B B and Kofane T C 2011 Commun. Theor. Phys. 55 291
[32] Kofane T C 2012 General Relativity and Gravitation 44 2181
[33] Capozziello S, Lobo F S N and Mimoso J P 2015 General Relativity and Gravitation 47 34
[34] De Oliveira J and Fontana R D B 2018 Phys. Rev. D 98 044005
[35] Kiselev V 2003 Classical and Quantum Gravity 20 1187
[36] Saleh M, Thomas B B and Kofane T C 2018 Euro. Phys. J. C 78 1
[37] Thomas B B, Saleh M and Kofane T C 2012 General Relativity and Gravitation 44 2181
[38] Zhang Y and Gui Y X 2006 Classical and Quantum Gravity 23 6141
[39] Varghese N and Kuriakose V C 2009 General Relativity and Gravitation 41 1249
[1] Application of Newtonian approximate model to LIGO gravitational wave data processing
Jie Wu(吴洁), Jin Li(李瑾), and Qing-Quan Jiang(蒋青权). Chin. Phys. B, 2023, 32(9): 090401.
[2] Shadow thermodynamics of AdS black hole with the nonlinear electrodynamics term
He-Bin Zheng(郑何斌), Ping-Hui Mou(牟平辉), Yun-Xian Chen(陈芸仙), and Guo-Ping Li(李国平). Chin. Phys. B, 2023, 32(8): 080401.
[3] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[4] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[5] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[6] Thermodynamics and weak cosmic censorship conjecture of charged AdS black hole in the Rastall gravity with pressure
Xin-Yun Hu(胡馨匀), Ke-Jian He(何柯健), Zhong-Hua Li(李中华), Guo-Ping Li(李国平). Chin. Phys. B, 2020, 29(5): 050401.
[7] Thermal properties of regular black hole with electric charge in Einstein gravity coupled to nonlinear electrodynamics
Yi-Huan Wei(魏益焕). Chin. Phys. B, 2019, 28(12): 120401.
[8] Destroying MTZ black holes with test particles
Yu Song(宋宇), Hao Tang(唐浩), De-Cheng Zou(邹德成), Cheng-Yi Sun(孙成一), Rui-Hong Yue(岳瑞宏). Chin. Phys. B, 2018, 27(2): 020401.
[9] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[10] Gravitational quasi-normal modes of static R2 Anti-de Sitter black holes
Hong Ma(马洪), Jin Li(李瑾). Chin. Phys. B, 2017, 26(6): 060401.
[11] A note on the mass of Kerr-AdS black holes in the off-shell generalized ADT formalism
Yi-De Jing(景艺德), Jun-Jin Peng(彭俊金). Chin. Phys. B, 2017, 26(10): 100401.
[12] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[13] Concrete quantum tunneling spectrum of Schwarzschild black holes
Chen Si-Na (陈斯纳), Zhang Jing-Yi (张靖仪). Chin. Phys. B, 2015, 24(2): 020401.
[14] Thermodynamics of a two-dimensional charged black holein the geometric framework
Han Yi-Wen (韩亦文), Hong Yun (洪云). Chin. Phys. B, 2014, 23(10): 100401.
[15] Spectroscopy via adiabatic covariant action for the Bañados-Teitelboim-Zanelli (BTZ) black hole
Li Hui-Ling (李慧玲), Lin Rong (林榕), Cheng Li-Ying (程丽英). Chin. Phys. B, 2013, 22(5): 050402.
No Suggested Reading articles found!