Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020401    DOI: 10.1088/1674-1056/ac11e9
GENERAL Prev   Next  

Darboux transformation and soliton solutions of a nonlocal Hirota equation

Yarong Xia(夏亚荣)1,2, Ruoxia Yao(姚若侠)1,†, and Xiangpeng Xin(辛祥鹏)3
1 School of Computer Science, Shaanxi Normal University, Xi'an 710062, China;
2 School of Information and Engineering, Xi'an University, Xi'an 710065, China;
3 School of Mathematical Sciences, Liaocheng University, Liaocheng 252029, China
Abstract  Starting from local coupled Hirota equations, we provide a reverse space-time nonlocal Hirota equation by the symmetry reduction method known as the Ablowitz-Kaup-Newell-Segur scattering problem. The Lax integrability of the nonlocal Hirota equation is also guaranteed by existence of the Lax pair. By Lax pair, an n-fold Darboux transformation is constructed for the nonlocal Hirota equation by which some types of exact solutions are found. The solutions with specific properties are distinct from those of the local Hirota equation. In order to further describe the properties and the dynamic features of the solutions explicitly, several kinds of graphs are depicted.
Keywords:  nonlocal Hirota equation      Darboux transformation      Lax pair      soliton soultion  
Received:  11 June 2021      Revised:  28 June 2021      Accepted manuscript online:  07 July 2021
PACS:  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: The project was supported by the National Natural Science Foundation of China (Grant Nos. 12001424, 11471004, and 11775047), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JZ-21), the Chinese Post doctoral Science Foundation (Grant No. 2020M673332), the Research Award Foundation for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2015SF009), and the Three-Year Action Plan Project of Xi'an University (Grant No. 21XJZZ0001-01).
Corresponding Authors:  Ruoxia Yao     E-mail:  rxyao@snnu.edu.cn

Cite this article: 

Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏) Darboux transformation and soliton solutions of a nonlocal Hirota equation 2022 Chin. Phys. B 31 020401

[1] Huang L L and Mu C L 2020 J. Differ. Equation 269 6794
[2] Ablowitz M J, Luo X D and Musslimani Z H 2020 Nonlinearity 33 3653
[3] Liu Y K and Li B 2020 Nonlinear Dynam. 100 3717
[4] Chen J C, Yan Q X and Zhang H 2020 Appl. Math. Lett. 106 106375
[5] Chen J C and Yan Q X 2020 Nonlinear Dynam. 100 2807
[6] Wang Q and Liang G 2020 J. Opt. 22 055501
[7] Shen W, Ma Z Y, Fei J X, Zhu Q Y and Chen J C 2020 Complexity 2020 2370970
[8] Su J J and Zhang S 2021 Appl. Math. Lett. 112 106714
[9] Lou S Y 2020 Commun. Theor. Phys. 72 057001
[10] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[11] Sarma A K, Mohammad A M, Musslimani Z H and Christodoulides D N 2014 Phys. Rev. E 89 052918
[12] Khara A and Saxena A 2015 J. Math. Phys. 56 032104
[13] Fokas A S 2016 Nonlinearity 29 319
[14] Li M and Xu T 2015 Phys. Rev. E 91 033202
[15] Ma L Y and Zhu Z N 2016 J. Math. Phys. 57 064105
[16] Rao J G, Cheng Y and He J S 2017 Stud. Appl. Math. 139 568
[17] Ablowitz M J, Feng B F and Luo X D 2018 Stud. Appl. Math. 141 267
[18] Ha J T, Zhang H Q and Zhao Q L 2019 J. Appl. Anal. Comput. 9 200
[19] Xin X P, Xia Y R, Liu H Z and Zhang L L 2020 J. Math. Anal. Appl. 490 124227
[20] Yuan C L and Wen X Y 2021 Chin. Phys. B 30 060201
[21] Song C Q and Zhu Z N 2020 Acta Phys. Sin. 69 010204 (in Chinese)
[22] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125
[23] Zhang Y, Dong K H and Jin R J 2013 AIP Conf. Proc. 1562 249
[24] Huang X and Ling L M 2016 Eur. Phys. J. Plus 131 1
[25] Ye R S and Zhang Y 2020 Stud. Appl. Math. 145 197
[26] Du Z, Tian B, Qu Q X and Zhao X H 2020 Chin. Phys. B 29 030202
[27] Wazwaz A M 2020 Comput. Math. Appl. 79 1145
[28] Ma W X 2019 J. Appl. Anal. Comput. 9 1319
[29] Wang W, Yao R X and Lou S Y 2020 Chin. Phys. lett. 37 100501
[30] Xia Y R, Yao R X and Xin X P 2020 J. Nonlinear Math. Phys. 27 581
[31] Xin X P, Zhang L H, Xia Y R and Liu H Z 2020 J. Appl. Anal. Comput. 10 2669
[32] Yin Y H, Chen S J and Lv X 2020 Chin. Phys. B 29 120502
[33] Lv X and Chen S J 2021 Nonlinear Dynam. 103 947
[34] Song M, Wang B D and Cao J 2020 Chin. Phys. B 29 100206
[35] Xia J W, Zhao Y W and Lv X 2020 Commun. Nonlinear Sci. Numer. Simul. 90 105260
[36] Xia Y R Xin X P and Zhang S L 2017 Chin. Phys. B 26 030202
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[3] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[4] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[5] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[6] Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation
Mi Chen(陈觅) and Zhen Wang(王振). Chin. Phys. B, 2020, 29(12): 120201.
[7] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[8] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[9] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[10] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[11] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[12] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[13] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
[14] Non-autonomous discrete Boussinesq equation:Solutions and consistency
Nong Li-Juan (农丽娟), Zhang Da-Juan (张大军). Chin. Phys. B, 2014, 23(7): 070202.
[15] Riccati-type Bäcklund transformations of nonisospectral and generalized variable-coefficient KdV equations
Yang Yun-Qing (杨云青), Wang Yun-Hu (王云虎), Li Xin (李昕), Cheng Xue-Ping (程雪苹). Chin. Phys. B, 2014, 23(3): 030506.
No Suggested Reading articles found!