|
|
Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation |
Mi Chen(陈觅) and Zhen Wang(王振)† |
School of Mathematical Science, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract A chain of novel higher order rational solutions with some parameters and interaction solutions of a (2+1)-dimensional reverse space-time nonlocal Schrödinger (NLS) equation was derived by a generalized Darboux transformation (DT) which is derived by Taylor expansion and determinants. We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions, singular breather and periodic wave interaction solution, singular breather and traveling wave interaction solution, bimodal breather and periodic wave interaction solution by two spectral parameters. We found a general formula for these solutions in the form of determinants. We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the (2+1)-dimensional reverse space-time nonlocal NLS equation.
|
Received: 29 August 2020
Revised: 18 September 2020
Accepted manuscript online: 15 October 2020
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
05.45.Yv
|
(Solitons)
|
|
02.30.Jr
|
(Partial differential equations)
|
|
Fund: Project supported by LiaoNing Revitalization Talents Program, China (Grant No. XLYC1907014) and Dalian Hi-level Talents Innovation Plan (Grant No. 2017RQ101). |
Corresponding Authors:
†Corresponding author. E-mail: wangzhen@dult.edu.cn
|
Cite this article:
Mi Chen(陈觅) and Zhen Wang(王振) Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation 2020 Chin. Phys. B 29 120201
|
[1] Liu Y K and Li B Chin. Phys. Lett. 34 010202 DOI: 10.1088/0256-307X/34/1/0102022017 [2] Zhang Z, Yang X Y, Li W T and Li B Chin. Phys. B. 28 110201 DOI: 10.1088/1674-1056/ab44a32019 [3] Dong J J, Li Bi and Yuen M W Commun. Theor. Phys. 72 025002 DOI: 10.1088/1572-9494/ab61842020 [4] Xie S Y and Lin J Chin. Phys. B 19 050201 DOI: 10.1088/1674-1056/19/5/0502012010 [5] Jia M, Wang J Y and Lou S Y Chin. Phys. Lett. 26 020201 DOI: 10.1088/0256-307X/26/2/0202012009 [6] Ablowitz M J and Musslimani Z H Nonlinearity 29 915 DOI: 10.1088/0951-7715/29/3/9152016 [7] Ablowitz M J, Luo X D and Musslimani Z H J. Math. Phys. 59 011501 DOI: 10.1063/1.50182942018 [8] Huang L L, Qiao Z J and Chen Yong Chin. Phys. B 27 020201 DOI: 10.1088/1674-1056/27/2/0202012018 [9] Park Q H and Shin H J Phys. Rev. E 59 2373 DOI: 10.1103/PhysRevE.59.23731999 [10] Xu T, Chen Y and Lin J Chin. Phys. B 26 120201 DOI: 10.1088/1674-1056/26/12/1202012017 [11] Wen X Y and Yan Z Y Commun Nonlinear Sci Numer Simulat 43 311 DOI: 10.1016/j.cnsns.2016.07.0202017 [12] Guo B L, Ling L M and Liu Q P Phys. Rev. E 85 026607 DOI: 10.1103/PhysRevE.85.0266072012 [13] Guo B L, Ling L M and Liu Q P Stud. Appl. Math. 130 317 DOI: 10.1111/sapm.2013.130.issue-42012 [14] Zhang Z, Yang X Y and Li B Appl. Math. Lett. 103 106168 DOI: 10.1016/j.aml.2019.1061682020 [15] Ankiewicz A Devine N and Akhmediev N Phys. Lett. A 373 3997 DOI: 10.1016/j.physleta.2009.08.0532009 [16] Matveev V B Phys. Lett. A 166 205 DOI: 10.1016/0375-9601(92)90362-P1992 [17] Li M and Xu T Phys. Rev. E 91 033202 DOI: 10.1103/PhysRevE.91.0332022015 [18] Wen X Y, Yan Z Y and Yang Y Q Chaos 26 063123 DOI: 10.1063/1.49547672016 [19] Yan Z Y Appl. Math. Lett. 47 61 DOI: 10.1016/j.aml.2015.02.0252015 [20] Yan Z Y Appl. Math. Lett. 79 123 DOI: 10.1016/j.aml.2017.12.0072018 [21] Yan Z Y Appl. Math. Lett. 62 101 DOI: 10.1016/j.aml.2016.07.0102016 [22] Zhu X M and Zuo D F Appl. Math. Lett. 91 181 DOI: 10.1016/j.aml.2018.12.0112019 [23] Bogoyavlenskii O I Russ. Math. Surv+. 45 1 https://iopscience.iop.org/article/10.1070/RM1990v045n04ABEH002377/pdf1990 [24] Calogero F and Degasperis A IL Nuovo Cimento B 39 1 DOI: 10.1007/BF027381741977 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|