Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120201    DOI: 10.1088/1674-1056/abc165
GENERAL   Next  

Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation

Mi Chen(陈觅) and Zhen Wang(王振)†
School of Mathematical Science, Dalian University of Technology, Dalian 116024, China
Abstract  A chain of novel higher order rational solutions with some parameters and interaction solutions of a (2+1)-dimensional reverse space-time nonlocal Schrödinger (NLS) equation was derived by a generalized Darboux transformation (DT) which is derived by Taylor expansion and determinants. We obtained a series of higher-order rational solutions by one spectral parameter and we could get the periodic wave solution and three kinds of interaction solutions, singular breather and periodic wave interaction solution, singular breather and traveling wave interaction solution, bimodal breather and periodic wave interaction solution by two spectral parameters. We found a general formula for these solutions in the form of determinants. We also analyzed the complex wave structures of the dynamic behaviors and the effects of special parameters and presented exact solutions for the (2+1)-dimensional reverse space-time nonlocal NLS equation.
Keywords:  Darboux transformation      nonlocal Schrödinger equation      rational solutions      interaction solutions  
Received:  29 August 2020      Revised:  18 September 2020      Accepted manuscript online:  15 October 2020
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by LiaoNing Revitalization Talents Program, China (Grant No. XLYC1907014) and Dalian Hi-level Talents Innovation Plan (Grant No. 2017RQ101).
Corresponding Authors:  Corresponding author. E-mail: wangzhen@dult.edu.cn   

Cite this article: 

Mi Chen(陈觅) and Zhen Wang(王振) Rational solutions and interaction solutions for (2 + 1)-dimensional nonlocal Schrödinger equation 2020 Chin. Phys. B 29 120201

[1] Liu Y K and Li B Chin. Phys. Lett. 34 010202 DOI: 10.1088/0256-307X/34/1/0102022017
[2] Zhang Z, Yang X Y, Li W T and Li B Chin. Phys. B. 28 110201 DOI: 10.1088/1674-1056/ab44a32019
[3] Dong J J, Li Bi and Yuen M W Commun. Theor. Phys. 72 025002 DOI: 10.1088/1572-9494/ab61842020
[4] Xie S Y and Lin J Chin. Phys. B 19 050201 DOI: 10.1088/1674-1056/19/5/0502012010
[5] Jia M, Wang J Y and Lou S Y Chin. Phys. Lett. 26 020201 DOI: 10.1088/0256-307X/26/2/0202012009
[6] Ablowitz M J and Musslimani Z H Nonlinearity 29 915 DOI: 10.1088/0951-7715/29/3/9152016
[7] Ablowitz M J, Luo X D and Musslimani Z H J. Math. Phys. 59 011501 DOI: 10.1063/1.50182942018
[8] Huang L L, Qiao Z J and Chen Yong Chin. Phys. B 27 020201 DOI: 10.1088/1674-1056/27/2/0202012018
[9] Park Q H and Shin H J Phys. Rev. E 59 2373 DOI: 10.1103/PhysRevE.59.23731999
[10] Xu T, Chen Y and Lin J Chin. Phys. B 26 120201 DOI: 10.1088/1674-1056/26/12/1202012017
[11] Wen X Y and Yan Z Y Commun Nonlinear Sci Numer Simulat 43 311 DOI: 10.1016/j.cnsns.2016.07.0202017
[12] Guo B L, Ling L M and Liu Q P Phys. Rev. E 85 026607 DOI: 10.1103/PhysRevE.85.0266072012
[13] Guo B L, Ling L M and Liu Q P Stud. Appl. Math. 130 317 DOI: 10.1111/sapm.2013.130.issue-42012
[14] Zhang Z, Yang X Y and Li B Appl. Math. Lett. 103 106168 DOI: 10.1016/j.aml.2019.1061682020
[15] Ankiewicz A Devine N and Akhmediev N Phys. Lett. A 373 3997 DOI: 10.1016/j.physleta.2009.08.0532009
[16] Matveev V B Phys. Lett. A 166 205 DOI: 10.1016/0375-9601(92)90362-P1992
[17] Li M and Xu T Phys. Rev. E 91 033202 DOI: 10.1103/PhysRevE.91.0332022015
[18] Wen X Y, Yan Z Y and Yang Y Q Chaos 26 063123 DOI: 10.1063/1.49547672016
[19] Yan Z Y Appl. Math. Lett. 47 61 DOI: 10.1016/j.aml.2015.02.0252015
[20] Yan Z Y Appl. Math. Lett. 79 123 DOI: 10.1016/j.aml.2017.12.0072018
[21] Yan Z Y Appl. Math. Lett. 62 101 DOI: 10.1016/j.aml.2016.07.0102016
[22] Zhu X M and Zuo D F Appl. Math. Lett. 91 181 DOI: 10.1016/j.aml.2018.12.0112019
[23] Bogoyavlenskii O I Russ. Math. Surv+. 45 1 https://iopscience.iop.org/article/10.1070/RM1990v045n04ABEH002377/pdf1990
[24] Calogero F and Degasperis A IL Nuovo Cimento B 39 1 DOI: 10.1007/BF027381741977
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[4] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[5] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[6] Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation
Xiangyu Yang(杨翔宇), Zhao Zhang(张钊), and Biao Li(李彪)†. Chin. Phys. B, 2020, 29(10): 100501.
[7] Residual symmetry, interaction solutions, and conservation laws of the (2+1)-dimensional dispersive long-wave system
Ya-rong Xia(夏亚荣), Xiang-peng Xin(辛祥鹏), Shun-Li Zhang(张顺利). Chin. Phys. B, 2017, 26(3): 030202.
[8] Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics
Tao Xu(徐涛), Yong Chen(陈勇), Ji Lin(林机). Chin. Phys. B, 2017, 26(12): 120201.
[9] Localized waves in three-component coupled nonlinear Schrödinger equation
Tao Xu(徐涛), Yong Chen(陈勇). Chin. Phys. B, 2016, 25(9): 090201.
[10] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[11] Rogue-wave pair and dark-bright-rogue wave solutions of the coupled Hirota equations
Wang Xin (王鑫), Chen Yong (陈勇). Chin. Phys. B, 2014, 23(7): 070203.
[12] Deformed soliton, breather, and rogue wave solutions of an inhomogeneous nonlinear Schrödinger equation
Tao Yong-Sheng (陶勇胜), He Jing-Song (贺劲松), K. Porsezian. Chin. Phys. B, 2013, 22(7): 074210.
[13] N-soliton solutions of an integrable equation studied by Qiao
Zhaqilao (扎其劳). Chin. Phys. B, 2013, 22(4): 040201.
[14] Lattice soliton equation hierarchy and associated properties
Zheng Xin-Qing (郑新卿), Liu Jin-Yuan (刘金元). Chin. Phys. B, 2012, 21(9): 090202.
[15] N-soliton solution of a coupled integrable dispersionless equation
Zhaqilao(扎其劳), Zhao Yin-Long(赵银龙), and Li Zhi-Bin(李志斌). Chin. Phys. B, 2009, 18(5): 1780-1786.
No Suggested Reading articles found!