Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 120307    DOI: 10.1088/1674-1056/ad0625
GENERAL Prev   Next  

Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal

Yang-He Chen(陈洋河)1,2, Bo Ji(季波)1,2, Nian-Qin Li(李念芹)1,2, Zhen Jiang(姜震)1,2, Wei Li(李维)3, Yu-Dong Li(李昱东)3, Liang-Sen Feng(冯梁森)3, Teng-Fei Wu(武腾飞)3, and Guang-Qiang He(何广强)1,2,†
1 SJTU Pinghu Institute of Intelligent Optoelectronics, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China, Beijing 100095, China
Abstract  Hyperentanglement is a promising resource for achieving high capacity quantum communication. Here, we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion (SPDC) processes, where six different paths and two different frequencies are covered. A two-dimensional periodical χ(2) nonlinear photonic crystal (NPC) is designed to satisfy type-I quasi-phase-matching conditions in the plane perpendicular to the incident pump beam, and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency, with theoretically estimated photon flux up to 2.068×105 pairs·s-1·mm-2. We theoretically calculate the joint-spectral amplitude (JSA) of the generated photon pair and perform Schmidt decomposition on it, where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675, respectively. Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.
Keywords:  hyperentanglement      nonlinear photonic crystal      quasi-phase-matching  
Received:  02 August 2023      Revised:  18 October 2023      Accepted manuscript online:  24 October 2023
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002), the National Natural Science Foundation of China (Grant No.62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics(Grant No.2022SPIOE204), the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002), and the Sichuan Provincial Key Laboratory of Microwave Photonics (Grant No. 2023-04).
Corresponding Authors:  Guang-Qiang He     E-mail:  gqhe@sjtu.edu.cn

Cite this article: 

Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维),Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强) Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal 2023 Chin. Phys. B 32 120307

[1] Madsen L S, Laudenbach F, Askarani M F, Rortais F, Vincent T, Bulmer J F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N and Lavoie J 2022 Nature 606 75
[2] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X and Hu Y 2020 Science 370 1460
[3] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54
[4] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E and Furusawa A 2011 Science 332 330
[5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[6] Zhao J J, Guo X M, Wang X Y, Wang N, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 060302
[7] Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G and Zhou Q 2021 NPJ Quantum Inf. 7 123
[8] Silberhorn C, Korolkova N and Leuchs G 2002 Phys. Rev. Lett. 88 167902
[9] Ekert A K 1991 Phys. Rev. Lett. 67 661
[10] Brida G, Genovese M and Ruo Berchera I 2010 Nat. Photonics 4 227
[11] Defienne H, Ndagano B, Lyons A and Faccio D 2021 Nat. Phys. 17 591
[12] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[13] Appas F, Baboux F, Amanti M I, Lemaítre A, Boitier F, Diamanti E and Ducci S 2021 NPJ Quantum Inf. 7 118
[14] Hu X M, Zhang C, Guo Y, Wang F X, Xing W B, Huang C X, Liu B H, Huang Y F, Li C F, Guo G C, Gao X, Pivoluska M and Huber M 2021 Phys. Rev. Lett. 127 110505
[15] Levine Y, Sharir O, Cohen N and Shashua A 2019 Phys. Rev. Lett. 122 065301
[16] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 64 024302
[17] Barreiro J T, Langford N K, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 95 260501
[18] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C and Wei W C 2015 Nat. Photonics 9 536
[19] Kim J H, Kim Y, Im D G, Lee C H, Chae J W, Scarcelli G and Kim Y H 2021 Optica 8 1524
[20] Chapman J C, Lim C C W and Kwiat P G 2022 Phys. Rev. Appl. 18 044027
[21] Han Y, Sun Z, Dou T, Wang J, Li Z, Huang Y, Li P and Ma H 2022 Chin. Phys. Lett. 39 070301
[22] Graham T M, Bernstein H J, Wei T C, Junge M and Kwiat P G 2015 Nat. Commun. 6 7185
[23] Vallone G, Ceccarelli R, De Martini F and Mataloni P 2008 Phys. Rev. A 78 062305
[24] Barbieri M, Cinelli C, Mataloni P and De Martini F 2005 Phys. Rev. A 72 052110
[25] Kiess E, Shih Y H, Sergienko A V and Alley C O 1993 Phys. Rev. Lett. 71 3893
[26] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337
[27] Eibl M, Gaertner S, Bourennane M, Kurtsiefer C, Żukowski M and Weinfurter H 2003 Phys. Rev. Lett. 90 200403
[28] Barbieri M, De Martini F, Di Nepi G and Mataloni P 2004 Phys. Rev. Lett. 92 177901
[29] Li J, Yuan C, Shen S, Zhang Z, Zhang R, Li H, Wang Y, Deng G, You L, Wang Z, Song H, Fan Y, Guo G and Zhou Q 2023 Opt. Lett. 48 2917
[30] Yang C, Xi C, Jing J and He G 2018 Opt. Express 26 27945
[31] Yu X Q, Xu P, Xie Z D, Wang J F, Leng H Y, Zhao J S, Zhu S N and Ming N B 2008 Phys. Rev. Lett. 101 233601
[32] Chen Y 2015 Microelectron. Eng. 135 57
[33] He J, Tang S H, Qin Y Q, Dong P, Zhang H Z, Kang C H, Sun W X and Shen Z X 2003 J. Appl. Phys. 93 9943
[34] Zhang Y, Sheng Y, Zhu S, Xiao M and Krolikowski W 2021 Optica 8 372
[35] Xu X, Wang T, Chen P, Zhou C, Ma J, Wei D, Wang H, Niu B, Fang X, Wu D, Zhu S, Gu M, Xiao M and Zhang Y 2022 Nature 609 496
[36] Cai W H, Wei B, Wang S and Jin R B 2020 J. Opt. Soc. Am. B 37 3048
[37] Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P and Zhu S N 2023 Chin. Phys. B 32 080308
[38] Saravi S, Pertsch T and Setzpfandt F 2017 Phys. Rev. Lett. 118 183603
[39] Gong Y X, Xie Z D, Xu P, Yu X Q, Xue P and Zhu S N 2011 Phys. Rev. A 84 053825
[40] Rueda A, Sedlmeir F, Kumari M, Leuchs G and Schwefel H G L 2019 Nature 568 378
[41] Chen N, Wang Z, Wu J, Li H, He S, Fan Z, Fan Y, Zhang X, Zhou Q and Xu J 2023 Opt. Lett. 48 5355
[42] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304
[1] Generation of hyperentangled photon pairs based on lithium niobate waveguide
Yang-He Chen(陈洋河), Zhen Jiang(姜震), and Guang-Qiang He(何广强). Chin. Phys. B, 2023, 32(9): 090306.
[2] High power, widely tunable femtosecond MgO:PPLN optical parametric oscillator
Jinfang Yang(杨金芳), Chong Wang(王翀), Weijun Ling(令维军), Jingwen Xue(薛婧雯), Xiaojuan Du(杜晓娟), Wenting Wang(王文婷), Yuxiang Zhao(赵玉祥), Feiping Lu(路飞平), Xiangbing Li(李向兵), Jiajun Song(宋贾俊), Zhaohua Wang(王兆华), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(7): 074204.
[3] Complete hyperentangled Greenberger-Horne-Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[4] Faithful and efficient hyperentanglement purification for spatial-polarization-time-bin photon system
Fang-Fang Du(杜芳芳), Gang Fan(樊钢), Yi-Ming Wu(吴一鸣), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2023, 32(6): 060304.
[5] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[6] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[7] Generation of tripartite Einstein-Podolsky-Rosen steering by cascaded nonlinear process
Yu Liu(刘瑜), Su-Ling Liang(梁素玲), Guang-Ri Jin(金光日), You-Bin Yu(俞友宾), Jian-Yu Lan(蓝建宇), Xiao-Bin He(何小斌), Kang-Xian Guo(郭康贤). Chin. Phys. B, 2020, 29(5): 050301.
[8] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[9] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[10] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[11] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[12] Compact efficient optical parametric generator internal to a Q-switched Nd:YVO4 laser with periodically poled MgO:LiNbO3
Ji Feng(纪峰), Yao Jian-Quan(姚建铨), Zhang Bai-Gang(张百钢), Zhang Tie-Li(张铁犁), Xu De-Gang(徐德刚), and Wang Peng(王鹏). Chin. Phys. B, 2008, 17(4): 1286-1290.
[13] High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT
Zhang Bai-Gang (张百钢), Yao Jian-Quan (姚建铨), Lu Yang (路洋), Xu De-Gang (徐德刚), Ding Xin (丁欣), Wang Peng (王鹏), Zhang Tie-Li (张铁犁), Ji Feng (纪峰). Chin. Phys. B, 2005, 14(2): 353-358.
[14] Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons
Chen Xiong-Wen (陈雄文), Lin Xu-Sheng (林旭升), Lan Sheng (兰胜). Chin. Phys. B, 2005, 14(2): 366-371.
[15] Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3
Zhang Bai-Gang (张百钢), Yao Jian-Quan (姚建铨), Ding Xin (丁欣), Zhang Hao (张浩), Wang Peng (王鹏), Xu De-Gang (徐德刚), Yu Guo-Jun (禹国俊), Zhang Fan (张帆). Chin. Phys. B, 2004, 13(3): 364-368.
No Suggested Reading articles found!