|
|
Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal |
Yang-He Chen(陈洋河)1,2, Bo Ji(季波)1,2, Nian-Qin Li(李念芹)1,2, Zhen Jiang(姜震)1,2, Wei Li(李维)3, Yu-Dong Li(李昱东)3, Liang-Sen Feng(冯梁森)3, Teng-Fei Wu(武腾飞)3, and Guang-Qiang He(何广强)1,2,† |
1 SJTU Pinghu Institute of Intelligent Optoelectronics, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2 State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 3 Science and Technology on Metrology and Calibration Laboratory, Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China, Beijing 100095, China |
|
|
Abstract Hyperentanglement is a promising resource for achieving high capacity quantum communication. Here, we propose a compact scheme for the generation of path-frequency hyperentangled photon pairs via spontaneous parametric down-conversion (SPDC) processes, where six different paths and two different frequencies are covered. A two-dimensional periodical χ(2) nonlinear photonic crystal (NPC) is designed to satisfy type-I quasi-phase-matching conditions in the plane perpendicular to the incident pump beam, and a perfect phase match is achieved along the pump beam's direction to ensure high conversion efficiency, with theoretically estimated photon flux up to 2.068×105 pairs·s-1·mm-2. We theoretically calculate the joint-spectral amplitude (JSA) of the generated photon pair and perform Schmidt decomposition on it, where the resulting entropy S of entanglement and effective Schmidt rank K reach 3.2789 and 6.4675, respectively. Our hyperentangled photon source scheme could provide new avenues for high-dimensional quantum communication and high-speed quantum information processing.
|
Received: 02 August 2023
Revised: 18 October 2023
Accepted manuscript online: 24 October 2023
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.65.Lm
|
(Parametric down conversion and production of entangled photons)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province of China (Grant No.2018B030325002), the National Natural Science Foundation of China (Grant No.62075129), the Open Project Program of SJTU-Pinghu Institute of Intelligent Optoelectronics(Grant No.2022SPIOE204), the Science and Technology on Metrology and Calibration Laboratory (Grant No.JLJK2022001B002), and the Sichuan Provincial Key Laboratory of Microwave Photonics (Grant No. 2023-04). |
Corresponding Authors:
Guang-Qiang He
E-mail: gqhe@sjtu.edu.cn
|
Cite this article:
Yang-He Chen(陈洋河), Bo Ji(季波), Nian-Qin Li(李念芹), Zhen Jiang(姜震), Wei Li(李维),Yu-Dong Li(李昱东), Liang-Sen Feng(冯梁森), Teng-Fei Wu(武腾飞), and Guang-Qiang He(何广强) Compact generation scheme of path-frequency hyperentangled photons using 2D periodical nonlinear photonic crystal 2023 Chin. Phys. B 32 120307
|
[1] Madsen L S, Laudenbach F, Askarani M F, Rortais F, Vincent T, Bulmer J F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N and Lavoie J 2022 Nature 606 75 [2] Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X and Hu Y 2020 Science 370 1460 [3] Arrazola J M, Bergholm V, Brádler K, et al. 2021 Nature 591 54 [4] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E and Furusawa A 2011 Science 332 330 [5] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [6] Zhao J J, Guo X M, Wang X Y, Wang N, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 060302 [7] Zhang Z, Yuan C, Shen S, Yu H, Zhang R, Wang H, Li H, Wang Y, Deng G, Wang Z, You L, Wang Z, Song H, Guo G and Zhou Q 2021 NPJ Quantum Inf. 7 123 [8] Silberhorn C, Korolkova N and Leuchs G 2002 Phys. Rev. Lett. 88 167902 [9] Ekert A K 1991 Phys. Rev. Lett. 67 661 [10] Brida G, Genovese M and Ruo Berchera I 2010 Nat. Photonics 4 227 [11] Defienne H, Ndagano B, Lyons A and Faccio D 2021 Nat. Phys. 17 591 [12] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [13] Appas F, Baboux F, Amanti M I, Lemaítre A, Boitier F, Diamanti E and Ducci S 2021 NPJ Quantum Inf. 7 118 [14] Hu X M, Zhang C, Guo Y, Wang F X, Xing W B, Huang C X, Liu B H, Huang Y F, Li C F, Guo G C, Gao X, Pivoluska M and Huber M 2021 Phys. Rev. Lett. 127 110505 [15] Levine Y, Sharir O, Cohen N and Shashua A 2019 Phys. Rev. Lett. 122 065301 [16] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 64 024302 [17] Barreiro J T, Langford N K, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 95 260501 [18] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C and Wei W C 2015 Nat. Photonics 9 536 [19] Kim J H, Kim Y, Im D G, Lee C H, Chae J W, Scarcelli G and Kim Y H 2021 Optica 8 1524 [20] Chapman J C, Lim C C W and Kwiat P G 2022 Phys. Rev. Appl. 18 044027 [21] Han Y, Sun Z, Dou T, Wang J, Li Z, Huang Y, Li P and Ma H 2022 Chin. Phys. Lett. 39 070301 [22] Graham T M, Bernstein H J, Wei T C, Junge M and Kwiat P G 2015 Nat. Commun. 6 7185 [23] Vallone G, Ceccarelli R, De Martini F and Mataloni P 2008 Phys. Rev. A 78 062305 [24] Barbieri M, Cinelli C, Mataloni P and De Martini F 2005 Phys. Rev. A 72 052110 [25] Kiess E, Shih Y H, Sergienko A V and Alley C O 1993 Phys. Rev. Lett. 71 3893 [26] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett. 75 4337 [27] Eibl M, Gaertner S, Bourennane M, Kurtsiefer C, Żukowski M and Weinfurter H 2003 Phys. Rev. Lett. 90 200403 [28] Barbieri M, De Martini F, Di Nepi G and Mataloni P 2004 Phys. Rev. Lett. 92 177901 [29] Li J, Yuan C, Shen S, Zhang Z, Zhang R, Li H, Wang Y, Deng G, You L, Wang Z, Song H, Fan Y, Guo G and Zhou Q 2023 Opt. Lett. 48 2917 [30] Yang C, Xi C, Jing J and He G 2018 Opt. Express 26 27945 [31] Yu X Q, Xu P, Xie Z D, Wang J F, Leng H Y, Zhao J S, Zhu S N and Ming N B 2008 Phys. Rev. Lett. 101 233601 [32] Chen Y 2015 Microelectron. Eng. 135 57 [33] He J, Tang S H, Qin Y Q, Dong P, Zhang H Z, Kang C H, Sun W X and Shen Z X 2003 J. Appl. Phys. 93 9943 [34] Zhang Y, Sheng Y, Zhu S, Xiao M and Krolikowski W 2021 Optica 8 372 [35] Xu X, Wang T, Chen P, Zhou C, Ma J, Wei D, Wang H, Niu B, Fang X, Wu D, Zhu S, Gu M, Xiao M and Zhang Y 2022 Nature 609 496 [36] Cai W H, Wei B, Wang S and Jin R B 2020 J. Opt. Soc. Am. B 37 3048 [37] Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P and Zhu S N 2023 Chin. Phys. B 32 080308 [38] Saravi S, Pertsch T and Setzpfandt F 2017 Phys. Rev. Lett. 118 183603 [39] Gong Y X, Xie Z D, Xu P, Yu X Q, Xue P and Zhu S N 2011 Phys. Rev. A 84 053825 [40] Rueda A, Sedlmeir F, Kumari M, Leuchs G and Schwefel H G L 2019 Nature 568 378 [41] Chen N, Wang Z, Wu J, Li H, He S, Fan Z, Fan Y, Zhang X, Zhou Q and Xu J 2023 Opt. Lett. 48 5355 [42] Law C K, Walmsley I A and Eberly J H 2000 Phys. Rev. Lett. 84 5304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|