Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040201    DOI: 10.1088/1674-1056/27/4/040201
GENERAL   Next  

An extension of integrable equations related to AKNS and WKI spectral problems and their reductions

Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云)
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
Abstract  

A novel hierarchy of integrable nonlinear evolution equations related to the combined Ablowitz-Kaup-Newell-Segur (AKNS) and Wadati-Konno-Ichikawa (WKI) spectral problems is proposed, from which the Lax pair for a corresponding negative flow and its infinite many conservation laws are obtained. Furthermore, a reduction of this hierarchy is discussed, by which a generalized sinh-Gordon equation is derived on the basis of its negative flow.

Keywords:  integrable extension      nonlinear evolution equations      infinite conservation laws  
Received:  02 January 2018      Revised:  12 January 2018      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11501520 and 11331008) and the Outstanding Young Talent Research Fund of Zhengzhou University (Grant No. 1521315001).

Corresponding Authors:  Yun-Yun Zhai     E-mail:  zhaiyy@zzu.edu.cn

Cite this article: 

Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云) An extension of integrable equations related to AKNS and WKI spectral problems and their reductions 2018 Chin. Phys. B 27 040201

[1] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia:SIAM)
[2] Novikov S, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of Solitons:The Inverse Scattering Methods (New York:Consultants Bureau)
[3] Zhai Y Y, Geng X G and He G L 2014 Chin. Phys. B 23 060201
[4] Lundmark H and Szmigielski J 2016 Mem. Am. Math. Soc. 244 1155
[5] Geng X G and Wang H 2014 Chin. Phys. Lett. 31 070202
[6] He G L and Geng X G 2012 Chin. Phys. B 21 070205
[7] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125
[8] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 47 1698
[9] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[10] Shimizu T and Wadati M 1980 Prog. Theor. Phys. 63 808
[11] Boiti M, Pempinelli F and Tu G Z 1983 Prog. Theor. Phys. 69 48
[12] Chen H and Zhou Z X 2014 Chin. Phys. Lett. 31 120504
[13] Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory (Cambridge:Cambridge University Press)
[14] Boiti M, Gerdjikov V S and Pempinelli F 1986 Prog. Theor. Phys. 75 1111
[15] Belokolos E D, Bobenko A I, Enol'skii V Z, Its A R and Mateveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin:Springer-Verlag)
[16] Geng X G and Xue B 2010 Nonlinear Anal. 73 3662
[17] Li Z, Geng X G and Guan L 2016 Math. Meth. Appl. Sci. 39 734
[18] Qu C Z, Yao R X and Li Z B 2004 Chin. Phys. Lett. 21 2077
[19] Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[20] Hu X R, Chen J C and Chen Y 2015 Chin. Phys. Lett. 32 070201
[21] Ishimori Y 1982 J. Phys. Soc. Jpn. 51 3036
[22] Cao C W and Geng X G 1991 J. Math. Phys. 32 2323
[23] Lenells J and Fokas A S 2010 J. Math. Phys. 51 023519
[1] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[2] The Wronskian technique for nonlinear evolution equations
Jian-Jun Cheng(成建军) and Hong-Qing Zhang(张鸿庆). Chin. Phys. B, 2016, 25(1): 010506.
[3] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[4] Integrability of extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Wang Yun-Hu (王云虎), Chen Yong (陈勇). Chin. Phys. B, 2013, 22(5): 050509.
[5] Second-order nonlinear differential operators possessing invariant subspaces of submaximal dimension
Zhu Chun-Rong(朱春蓉). Chin. Phys. B, 2011, 20(1): 010201.
[6] A new expansion method of first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term and its application to mBBM model
Pan Jun-Ting(潘军廷) and Gong Lun-Xun(龚伦训). Chin. Phys. B, 2008, 17(2): 399-402.
No Suggested Reading articles found!