|
|
Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type |
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永)† |
1 School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China |
|
|
Abstract We propose a reverse-space nonlocal nonlinear self-dual network equation under special symmetry reduction, which may have potential applications in electric circuits. Nonlocal infinitely many conservation laws are constructed based on its Lax pair. Nonlocal discrete generalized (m, N-m)-fold Darboux transformation is extended and applied to solve this system. As an application of the method, we obtain multi-soliton solutions in zero seed background via the nonlocal discrete N-fold Darboux transformation and rational solutions from nonzero-seed background via the nonlocal discrete generalized (1, N-1)-fold Darboux transformation, respectively. By using the asymptotic and graphic analysis, structures of one-, two-, three-and four-soliton solutions are shown and discussed graphically. We find that single component field in this nonlocal system displays unstable soliton structure whereas the combined potential terms exhibit stable soliton structures. It is shown that the soliton structures are quite different between discrete local and nonlocal systems. Results given in this paper may be helpful for understanding the electrical signals propagation.
|
Received: 17 September 2020
Revised: 03 October 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
05.45.Yv
|
(Solitons)
|
|
04.60.Nc
|
(Lattice and discrete methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12071042 and 61471406), the Beijing Natural Science Foundation, China (Grant No. 1202006), and Qin Xin Talents Cultivation Program of Beijing Information Science and Technology University (QXTCP-B201704). |
Corresponding Authors:
†Corresponding author. E-mail: xiaoyongwen@163.com
|
Cite this article:
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永) Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type 2021 Chin. Phys. B 30 030201
|
1 Wadati M 1976 Prog. Theor. Phys. Suppl. 59 36 2 Hirota R and Suzuki K 1970 J. Phys. Soc. Jpn. 28 1366 3 Hirota R 1973 J. Phys. Soc. Jpn. 35 289 4 Toda M1989 Theory of Nonlinear Lattices (Berlin: Springer) 5 Ablowitz M J and Clarkson P A1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (New York: Cambridge University Press) 6 Ankiewicz A, Akhmediev N and Soto-Crespo J M 2010 Phys. Rev. E 82 026602 7 Akhmediev N and Ankiewicz A 2011 Phys. Rev. E 83 046603 8 Ablowitz M J and Ladik J F 1975 J. Math. Phys. 16 598 9 Geng X G 1989 Acta. Math. Sci. 9 21 10 Geng X G and Dai H H 2007 J. Math. Anal. Appl. 327 829 11 Feng W and Zhao S L 2020 Appl. Math. Lett. 102 106093 12 Wen X Y 2012 J. Phys. Soc. Jpn. 81 114006 13 Zhou J, Zhang D J and Zhao S L 2009 Phys. Lett. A 373 3248 14 Qiu Y Y, He J S and Li M H 2019 Commun. Theor. Phys. 71 1 15 Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105 16 Vishnu Priya N, Senthivelan M, Rangarajan G and Lakshmanan M 2019 Phys. Lett. A 383 15 17 Yang B and Yang J 2019 Lett. Math. Phys. 109 945 18 Yan Z 2015 Appl. Math. Lett. 47 61 19 Li M and Xu T 2015 Phys. Rev. E 91 033202 20 Li M, Xu T and Meng D 2016 J. Phys. Soc. Jpn. 85 124001 21 Wen X Y, Yan Z and Yang Y 2016 Chaos 26 063123 22 Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7 23 Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912 24 Ji J L, Zhu Z N 2017 J. Math. Anal. Appl. 453 973 25 Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202 26 Stalin S, Senthilvelan M and Lakshmanan M 2019 Nonlinear Dyn. 95 343 27 Liu X Z, Yu J, Lou Z M and Qian X M 2019 Chin. Phys. B 28 010201 28 Xu S Q and Geng X G 2018 Chin. Phys. B 27 120202 29 Hanif Y, Sarfraz H and Saleem U 2020 Nonlinear Dyn. 100 1559 30 Yu F J 2019 Appl. Math. Lett. 92 108 31 Li L, Yu F J and Duan C N 2020 Appl. Math. Lett. 110 106584 32 Yu F J and Fan R 2020 Appl. Math. Lett. 103 106209 33 Yu F J, Yu J and Li L 2020 Wave Motion 94 102500 34 Yu F J 2017 Chaos 27 023108 35 Wen X Y and Wang D S 2018 Wave Motion 79 84 36 Yuan C L, Wen X Y, Wang H T and Liu Y 2020 Chin. J. Phys. 64 45 37 Wen X Y and Wang H T 2020 Acta Phys. Sin. 69 010205 (in Chinese) 38 Hanif Y and Saleem U 2019 Nonlinear Dyn. 98 233 39 Ma L Y and Zhu Z N 2016 J. Math. Phys. 57 083507 40 Sarfraz H, Hanif Y and Saleem U 2020 Nonlinear Dyn. 99 2409 41 Xu T, Li H, Zhang H, Li M and Lan S 2017 Appl. Math. Lett. 63 88 42 Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) 43 Lou S Y 2020 Acta Phys. Sin. 69 010503 (in Chinese) 44 Yuan F, He J S and Cheng Y 2019 Chin. Phys. B 28 100202 45 Wang M M and Chen Y 2019 Nonlinear Dyn. 98 1781 46 Xu T and Chen Y 2018 Commun. Nonlinear Sci. Numer. Simul. 57 276 47 Xu T and Chen Y 2016 Chin. Phys. B 25 090201 48 Xu T, Chen Y and Lin J 2017 Chin. Phys. B 26 120201 49 Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501 50 Song C Q and Zhu Z N 2020 Acta Phys. Sin. 69 010204 (in Chinese) 51 Du Z, Tian B, Qu Q X and Zhao X H 2020 Chin. Phys. B 29 030202 52 Zhang D and Chen D 2002 Chaos Soliton Fract. 14 573 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|