Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010505    DOI: 10.1088/1674-1056/ac9822
GENERAL Prev   Next  

Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation

Xuefeng Zhang(张雪峰)1,2, Tao Xu(许韬)1,2,3,†, Min Li(李敏)4, and Yue Meng(孟悦)3
1 State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
2 College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China;
3 College of Science, China University of Petroleum, Beijing 102249, China;
4 North China Electric Power University, Beijing 102206, China
Abstract  We make a quantitative study on the soliton interactions in the nonlinear Schrödinger equation (NLSE) and its variable-coefficient (vc) counterpart. For the regular two-soliton and double-pole solutions of the NLSE, we employ the asymptotic analysis method to obtain the expressions of asymptotic solitons, and analyze the interaction properties based on the soliton physical quantities (especially the soliton accelerations and interaction forces); whereas for the bounded two-soliton solution, we numerically calculate the soliton center positions and accelerations, and discuss the soliton interaction scenarios in three typical bounded cases. Via some variable transformations, we also obtain the inhomogeneous regular two-soliton and double-pole solutions for the vcNLSE with an integrable condition. Based on the expressions of asymptotic solitons, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles, particularly discuss the influence of the variable dispersion function f(t) on the soliton interaction dynamics.
Keywords:  nonlinear Schrödinger equation      soliton solutions      asymptotic analysis      soliton interactions  
Received:  03 September 2022      Revised:  03 October 2022      Accepted manuscript online:  07 October 2022
PACS:  05.45.Yv (Solitons)  
  02.30.Ik (Integrable systems)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the Natural Science Foundation of Beijing Municipality (Grant No. 1212007), the National Natural Science Foundation of China (Grant No. 11705284), and the Open Project Program of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Grant No. PRP/DX-2211).
Corresponding Authors:  Tao Xu     E-mail:

Cite this article: 

Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦) Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation 2023 Chin. Phys. B 32 010505

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[3] Bailung H and Nakamura Y 1993 J. Plasma Phys. 50 231
[4] Scott A C 1984 Phys. Scr. 29 279
[5] Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918
[6] Benney D J and Newell A C 1967 Stud. Appl. Math. 46 133
[7] Yan Z 2010 Commun. Theor. Phys. 54 947
[8] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[9] Zakharov V E and Shabat A B 1973 Sov. Phys. JETP 37 823
[10] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystal (San Diego: Academic Press) p. 63
[11] Agrawal G P 2013 Nonlinear Fiber Optics, 5th edn. (New York: Academic Press) p. 87
[12] Mollenauer L, Stolen R and Gordon J 1980 Phys. Rev. Lett. 45 1095
[13] Ablowitz M J and Clarkson P A 1992 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press) p. 128
[14] Li S, Biondini G and Schiebold C 2017 J. Math. Phys. 58 033507
[15] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[16] Lou S Y 2020 J. Phys. Commun. 4 041002
[17] Schiebold C 2017 Nonlinearity 30 2930
[18] Gordon J P 1983 Opt. Lett. 8 596
[19] Olmedilla E 1987 Physica D 25 330
[20] Rao J G, He J S, Kanna T and Mihalache D 2020 Phys. Rev. E 102 032201
[21] Rao J G, Kanna T, Sakkaravarthi K and He J S 2021 Phys. Rev. E 103 062214
[22] Abdullaeev F 1994 Theory of Solitons in Inhomogeneous Media (New York: Wiley) p. 38
[23] Moores J D 1996 Opt. Lett. 21 555
[24] Serkin B N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
[25] Ablowitz M J and Musslimani Z H 2003 Phys. Rev. E 67 025601
[26] Sugahara H and Maruta A 1999 Opt. Lett. 24 145
[27] Chen Y and Haus H A 1999 Opt. Lett. 24 217
[28] Kruglov V I, Peacock A C and Harvey J D 2003 Phys. Rev. Lett. 90 113902
[29] Xu Z Y and Li L 2003 Phys. Rev. E 68 046605
[30] Mak C C, Chow K W and Nakkeeran K 2005 J. Phys. Soc. Jpn. 74 1449
[31] Tian B, Shan W R, Zhang C Y, Wei G M and Gao Y T 2005 Eur. Phys. J. B 47 329
[32] Chernikov S V, Dianov E M, Richardson D J and Payne D N 1993 Opt. Lett. 18 476
[33] Mostofi A, Hatami-Hanza H and Chu P L 1997 IEEE J. Quantum Electron. 33 620
[34] Doran N and Blow K 1982 IEEE J. Quantum Electron. 19 1883
[35] Kodama Y and Nozaki K 1987 Opt. Lett. 12 1038
[36] Karpman V I and Solov'ev V V 1981 Physica D 3 487
[37] Gagnon L and Stievenart N 1994 Opt. Lett. 19 619
[38] Mitschke F M and Mollenauer L F 1987 Opt. Lett. 12 355
[39] Akhmediev N N and Mitzkevich N V 1991 IEEE J. Quantum Electron 27 849
[40] Li M, Zhang X F, Xu T and Li L L 2020 J. Phys. Soc. Jpn. 89 054004
[41] Xu T, Li L L, Li M, Li C X and Zhang X F 2021 Proc. R. Soc. A 477 20210512
[42] Zhang S S, Xu T, Li M and Zhang X F 2022 Physica D 432 133128
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[4] Soliton, breather, and rogue wave solutions for solving the nonlinear Schrödinger equation using a deep learning method with physical constraints
Jun-Cai Pu(蒲俊才), Jun Li(李军), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(6): 060202.
[5] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[6] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[7] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[8] Multi-soliton solutions for the coupled modified nonlinear Schrödinger equations via Riemann-Hilbert approach
Zhou-Zheng Kang(康周正), Tie-Cheng Xia(夏铁成), Xi Ma(马茜). Chin. Phys. B, 2018, 27(7): 070201.
[9] N-soliton solutions for the nonlocal two-wave interaction system via the Riemann-Hilbert method
Si-Qi Xu(徐思齐), Xian-Guo Geng(耿献国). Chin. Phys. B, 2018, 27(12): 120202.
[10] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[11] Periodic solitons in dispersion decreasingfibers with a cosine profile
Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣). Chin. Phys. B, 2014, 23(10): 100502.
[12] Matter-wave solutions of Bose–Einstein condensates with three-body interaction in linear magnetic and time-dependent laser fields
Etienne Wamba, Timolėon C. Kofanė, and Alidou Mohamadou . Chin. Phys. B, 2012, 21(7): 070504.
[13] Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation
Zhang Yi (张翼), Cheng Zhi-Long (程智龙), Hao Xiao-Hong (郝晓红). Chin. Phys. B, 2012, 21(12): 120203.
[14] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao(胡晓) and Li Biao(李彪). Chin. Phys. B, 2011, 20(5): 050315.
[15] Study on an extended Boussinesq equation
Chen Chun-Li(陈春丽), Zhang Jin E(张近), and Li Yi-Shen(李翊神). Chin. Phys. B, 2007, 16(8): 2167-2179.
No Suggested Reading articles found!