CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Eigenstates and temporal dynamics in cavity optomagnonics |
Yun-Jing Ding(丁云静)1 and Yang Xiao(肖杨)2,† |
1 School of Physics, Nanjing University, Nanjing 210093, China; 2 Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
|
|
Abstract Many studies of magnon-photon coupling are performed in the frequency domain for microwave photons. In this work, we present analytical results of eigenfrequency, eigenstates, and temporal dynamics for the coupling between ferromagnetic magnon and visible photon. In contrast to microwave photons, optical photons can be coupled with magnon in a dispersive interaction which produces both level repulsion and attraction by varying the magnon-photon frequency detuning. At resonance, the hybridized states are of linear polarization and circular polarization for level repulsion and level attraction respectively. As the detuning increases, the polarizations of level repulsion remain linear but those of level attraction vary from elliptical to linear polarizations. The temporal dynamics of level repulsion presents the beat-like behavior. The level attraction presents monotonous decay in the weak coupling regime but gives rise to instability in the strong coupling regime due to the magnon amplification. As the detuning is large, both magnon and photon amplitudes present a synchronizing oscillation. Our results are important for exploring the temporal evolution of magnon-photon coupling in the range of optical frequency and designing magnon-based timing devices.
|
Received: 25 March 2023
Revised: 10 July 2023
Accepted manuscript online: 15 August 2023
|
PACS:
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
85.70.Ge
|
(Ferrite and garnet devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC61974067 and 62374087). We thank Prof. Ke Xia and Prof. C. M. Hu for their helpful comments in doing this work. |
Corresponding Authors:
Yang Xiao
E-mail: fryxiao@nuaa.edu.cn
|
Cite this article:
Yun-Jing Ding(丁云静) and Yang Xiao(肖杨) Eigenstates and temporal dynamics in cavity optomagnonics 2023 Chin. Phys. B 32 107601
|
[1] Rameshti B A, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E and Blanter Y M 2022 Phys. Rep. 979 1 [2] Yuan H, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [3] Lei X L, Li P B, Pan X F and Nori F 2023 Phys. Rev. Lett. 130 073602 [4] Soykal O O and Flatte M E 2010 Phys. Rev. Lett. 104 077202 [5] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003 [6] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002 [7] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401 [8] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603 [9] Zhang X, Ding K, Zhou X, Xu J and Jin D 2019 Phys. Rev. Lett. 123 237202 [10] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405 [11] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425 [12] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101 [13] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q and Hu C M 2015 Phys. Rev. Lett. 114 227201 [14] Cao Y, Yan P, Huebl H, Goennenwein S T B and Bauer G E W 2015 Phys. Rev. B 91 094423 [15] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202 [16] Hei X L, Dong X L, Chen J Q, Shen C P, Qiao Y F and Li P B 2021 Phys. Rev. A 103 043706 [17] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601 [18] Xiao Y, Yan X H, Zhang Y, Grigoryan V L, Hu C M, Guo H and Xia K 2019 Phys. Rev. B 99 094407 [19] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914 [20] Match C, Harder M, Bai L, Hyde P and Hu C M 2019 Phys. Rev. B 99 134445 [21] Wolz T, Stehli A, Schneider A, Boventer I, Macedo R, Ustinov A, Klaui M and Weides M 2020 Commun. Phys. 3 3 [22] Boventer I, Klaui M, Macedo R and Weides M 2019 New J. Phys. 21 125001 [23] Boventer I, Dorflinger C, Wolz T, Macedo R, Lebrun R, Klaui M, Macedo R and Weides M 2020 Phys. Rev. Res. 2 013154 [24] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203 [25] Wang Y P, Rao J, Yang Y, Xu P C, Gui Y, Yao B, You J and Hu C M 2019 Phys. Rev. Lett. 123 127202 [26] Yuan H, Yan P, Zheng S, He Q, Xia K and Yung M H 2020 Phys. Rev. Lett. 124 053602 [27] Yu W, Wang J, Yuan H and Xiao J 2019 Phys. Rev. Lett. 123 227201 [28] Bhoi B, Kim B, Jang S H, Kim J, Yang J, Cho Y J and Kim S K 2019 Phys. Rev. B 99 134426 [29] Grigoryan V L, Shen K and Xia K 2018 Phys. Rev. B 98 024406 [30] Wang Y P and Hu C M 2020 J. Appl. Phys. 127 130901 [31] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [32] Kusminskiy S V 2021 Optomagnonic Structures (Singapore: World Scientific) pp. 299-353 [33] Haigh J A, Nunnenkamp A, Ramsay A J and Ferguson A J 2016 Phys. Rev. Lett. 117 133602 [34] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601 [35] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605 [36] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y and Usami K 2018 Phys. Rev. Lett. 120 133602 [37] Kusmminskiy S V, Tang H X and Marquardt F 2016 Phys. Rev. A 94 033821 [38] Kittel C and McEuen P 2018 Introduction to Solid State Physics (New York: John Wiley) [39] Bernier N R, Toth L D, Feofanov A K and Kippenberg T J 2018 Phys. Rev. A 98 023841 [40] Glauber R J 1986 Annals of the New York Academy of Sciences 480 336 [41] Kohler J, Gerber J A, Dowd E and Stamperkurn D M 2018 Phys. Rev. Lett. 120 013601 [42] Li Y, Yefremenko V G, Lisovenko M, Trevillian C, Polakovic T, Cecil T W, Barry P S, Pearson J, Divan R, Tyberkevych V, Chang C L, Welp U, Kwok W K and Novosad V 2022 Phys. Rev. Lett. 128 047701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|