Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107601    DOI: 10.1088/1674-1056/acf039
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Eigenstates and temporal dynamics in cavity optomagnonics

Yun-Jing Ding(丁云静)1 and Yang Xiao(肖杨)2,†
1 School of Physics, Nanjing University, Nanjing 210093, China;
2 Department of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract  Many studies of magnon-photon coupling are performed in the frequency domain for microwave photons. In this work, we present analytical results of eigenfrequency, eigenstates, and temporal dynamics for the coupling between ferromagnetic magnon and visible photon. In contrast to microwave photons, optical photons can be coupled with magnon in a dispersive interaction which produces both level repulsion and attraction by varying the magnon-photon frequency detuning. At resonance, the hybridized states are of linear polarization and circular polarization for level repulsion and level attraction respectively. As the detuning increases, the polarizations of level repulsion remain linear but those of level attraction vary from elliptical to linear polarizations. The temporal dynamics of level repulsion presents the beat-like behavior. The level attraction presents monotonous decay in the weak coupling regime but gives rise to instability in the strong coupling regime due to the magnon amplification. As the detuning is large, both magnon and photon amplitudes present a synchronizing oscillation. Our results are important for exploring the temporal evolution of magnon-photon coupling in the range of optical frequency and designing magnon-based timing devices.
Keywords:  magnon      spin wave      cavity  
Received:  25 March 2023      Revised:  10 July 2023      Accepted manuscript online:  15 August 2023
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  85.70.Ge (Ferrite and garnet devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. NSFC61974067 and 62374087). We thank Prof. Ke Xia and Prof. C. M. Hu for their helpful comments in doing this work.
Corresponding Authors:  Yang Xiao     E-mail:  fryxiao@nuaa.edu.cn

Cite this article: 

Yun-Jing Ding(丁云静) and Yang Xiao(肖杨) Eigenstates and temporal dynamics in cavity optomagnonics 2023 Chin. Phys. B 32 107601

[1] Rameshti B A, Kusminskiy S V, Haigh J A, Usami K, Lachance-Quirion D, Nakamura Y, Hu C M, Tang H X, Bauer G E and Blanter Y M 2022 Phys. Rep. 979 1
[2] Yuan H, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[3] Lei X L, Li P B, Pan X F and Nori F 2023 Phys. Rev. Lett. 130 073602
[4] Soykal O O and Flatte M E 2010 Phys. Rev. Lett. 104 077202
[5] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[6] Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[7] Zhang X, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401
[8] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2014 Phys. Rev. Lett. 113 083603
[9] Zhang X, Ding K, Zhou X, Xu J and Jin D 2019 Phys. Rev. Lett. 123 237202
[10] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K and Nakamura Y 2015 Science 349 405
[11] Lachance-Quirion D, Wolski S P, Tabuchi Y, Kono S, Usami K and Nakamura Y 2020 Science 367 425
[12] Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K and Nakamura Y 2019 Appl. Phys. Express 12 070101
[13] Bai L, Harder M, Chen Y P, Fan X, Xiao J Q and Hu C M 2015 Phys. Rev. Lett. 114 227201
[14] Cao Y, Yan P, Huebl H, Goennenwein S T B and Bauer G E W 2015 Phys. Rev. B 91 094423
[15] Wang Y P, Zhang G Q, Zhang D, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202
[16] Hei X L, Dong X L, Chen J Q, Shen C P, Qiao Y F and Li P B 2021 Phys. Rev. A 103 043706
[17] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[18] Xiao Y, Yan X H, Zhang Y, Grigoryan V L, Hu C M, Guo H and Xia K 2019 Phys. Rev. B 99 094407
[19] Zhang X, Zou C L, Zhu N, Marquardt F, Jiang L and Tang H X 2015 Nat. Commun. 6 8914
[20] Match C, Harder M, Bai L, Hyde P and Hu C M 2019 Phys. Rev. B 99 134445
[21] Wolz T, Stehli A, Schneider A, Boventer I, Macedo R, Ustinov A, Klaui M and Weides M 2020 Commun. Phys. 3 3
[22] Boventer I, Klaui M, Macedo R and Weides M 2019 New J. Phys. 21 125001
[23] Boventer I, Dorflinger C, Wolz T, Macedo R, Lebrun R, Klaui M, Macedo R and Weides M 2020 Phys. Rev. Res. 2 013154
[24] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L and Hu C M 2018 Phys. Rev. Lett. 121 137203
[25] Wang Y P, Rao J, Yang Y, Xu P C, Gui Y, Yao B, You J and Hu C M 2019 Phys. Rev. Lett. 123 127202
[26] Yuan H, Yan P, Zheng S, He Q, Xia K and Yung M H 2020 Phys. Rev. Lett. 124 053602
[27] Yu W, Wang J, Yuan H and Xiao J 2019 Phys. Rev. Lett. 123 227201
[28] Bhoi B, Kim B, Jang S H, Kim J, Yang J, Cho Y J and Kim S K 2019 Phys. Rev. B 99 134426
[29] Grigoryan V L, Shen K and Xia K 2018 Phys. Rev. B 98 024406
[30] Wang Y P and Hu C M 2020 J. Appl. Phys. 127 130901
[31] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[32] Kusminskiy S V 2021 Optomagnonic Structures (Singapore: World Scientific) pp. 299-353
[33] Haigh J A, Nunnenkamp A, Ramsay A J and Ferguson A J 2016 Phys. Rev. Lett. 117 133602
[34] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601
[35] Zhang X, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605
[36] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y and Usami K 2018 Phys. Rev. Lett. 120 133602
[37] Kusmminskiy S V, Tang H X and Marquardt F 2016 Phys. Rev. A 94 033821
[38] Kittel C and McEuen P 2018 Introduction to Solid State Physics (New York: John Wiley)
[39] Bernier N R, Toth L D, Feofanov A K and Kippenberg T J 2018 Phys. Rev. A 98 023841
[40] Glauber R J 1986 Annals of the New York Academy of Sciences 480 336
[41] Kohler J, Gerber J A, Dowd E and Stamperkurn D M 2018 Phys. Rev. Lett. 120 013601
[42] Li Y, Yefremenko V G, Lisovenko M, Trevillian C, Polakovic T, Cecil T W, Barry P S, Pearson J, Divan R, Tyberkevych V, Chang C L, Welp U, Kwok W K and Novosad V 2022 Phys. Rev. Lett. 128 047701
[1] A novel power-combination method using a time-reversal pulse-compression technique
Xi-Cheng Lu(陆希成), Jin Tian(田锦), Rong-Wei Zhang(张荣威), Hai-Bo Wang(汪海波), and Yang Qiu(邱扬). Chin. Phys. B, 2023, 32(8): 084101.
[2] High-fidelity topological quantum state transfersin a cavity-magnon system
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), Xu Yang(杨煦), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(8): 080301.
[3] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[4] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[5] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), and Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[6] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[7] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[8] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[9] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[10] Topological resonators based on hexagonal-starvalley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[11] Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2023, 32(10): 107501.
[12] Simultaneous detection of CH4 and CO2 through dual modulation off-axis integrated cavity output spectroscopy
Yi-Xuan Liu(刘艺璇), Zhou-Bing Wang(王周兵), Xin-Xin Wei(韦欣欣), Jing-Jing Wang(王静静), Xin Meng(孟鑫), and Gui-Lin Mao(毛桂林). Chin. Phys. B, 2023, 32(10): 104209.
[13] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[14] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
[15] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
No Suggested Reading articles found!