|
|
Effects of carrier density and interactions on pairing symmetry in a t2g model |
Yun-Xiao Li(李云霄)1, Wen-Han Xi(西文翰)1, Zhao-Yang Dong(董召阳)2, Zi-Jian Yao(姚子健)3, Shun-Li Yu(于顺利)1,4,†, and Jian-Xin Li(李建新)1,4,‡ |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China; 2 Nanjing University of Science and Technology, Nanjing 210094, China; 3 Department of Physics, Nanjing Normal University, Nanjing 210023, China; 4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract By utilizing the fluctuation exchange approximation method, we perform a study on the superconducting pairing symmetry in a t2g three-orbital model on the square lattice. Although the tight-binding parameters of the model are based on Sr2RuO4, we have systematically studied the evolution of superconducting pairing symmetry with the carrier density and interactions, making our findings relevant to a broader range of material systems. Under a moderate Hund's coupling, we find that spin fluctuations dominate the superconducting pairing, leading to a prevalent spin-singlet pairing with a dx2-y2-wave symmetry for the carrier density within the range of n=1.5—4 per site. By reducing the Hund's coupling, the charge fluctuations are enhanced and play a crucial role in determining the pairing symmetry, leading to a transition of the pairing symmetry from the spin-singlet dx2-y2-wave to the spin-triplet p-wave. Furthermore, we find that the superconducting pairings are orbital dependent. As the carrier density changes from n=4 to n=1.5, the active orbitals for superconducting pairing shift from the quasi-two-dimensional orbital dxy to the quasi-one-dimensional orbitals dxz and dyz.
|
Received: 21 October 2023
Revised: 16 November 2023
Accepted manuscript online: 29 November 2023
|
PACS:
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
74.20.Rp
|
(Pairing symmetries (other than s-wave))
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
75.10.Lp
|
(Band and itinerant models)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400400) and the National Natural Science Foundation of China (Grant Nos. 92165205, 12074175, and 12374137). |
Corresponding Authors:
Shun-Li Yu, Jian-Xin Li
E-mail: slyu@nju.edu.cn;jxli@nju.edu.cn
|
Cite this article:
Yun-Xiao Li(李云霄), Wen-Han Xi(西文翰), Zhao-Yang Dong(董召阳), Zi-Jian Yao(姚子健), Shun-Li Yu(于顺利), and Jian-Xin Li(李建新) Effects of carrier density and interactions on pairing symmetry in a t2g model 2024 Chin. Phys. B 33 017404
|
[1] Paglione J and Greene R L 2010 Nat. Phys. 6 645 [2] Wang F and Lee D H 2011 Science 332 200 [3] Dai P 2015 Rev. Mod. Phys. 87 855 [4] Hosono H and Kuroki K 2015 Physica C 514 399 [5] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97 [6] Fernandes R M and Chubukov A V 2016 Rep. Prog. Phys. 80 014503 [7] Yi M, Zhang Y, Shen Z X and Lu D 2017 npj Quantum Materials 2 57 [8] Takimoto T 2000 Phys. Rev. B 62 R14641 [9] Mackenzie A P and Maeno Y 2003 Rev. Mod. Phys. 75 657 [10] Bergemann C, Mackenzie A P, Julian S R, Forsythe D and Ohmichi E 2003 Adv. Phys. 52 639 [11] Kallin C 2012 Rep. Prog. Phys. 75 042501 [12] Maeno Y, Kittaka S, Nomura T, Yonezawa S and Ishida K 2012 J. Phys. Soc. Jpn. 81 011009 [13] Mackenzie A P, Scaffidi T, Hicks C W and Maeno Y 2017 npj Quantum Materials 2 40 [14] Leggett A J and Liu Y 2021 J. Supercond. Nov. Magn. 34 1647 [15] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [16] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 [17] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [18] Ortiz B R, Teicher S M L, et al. 2020 Phys. Rev. Lett. 125 247002 [19] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D and Zeljkovic I 2021 Nature 599 216 [20] Chen H, Yang H, Hu B, et al. 2021 Nature 599 222 [21] Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 604 59 [22] Zheng L, Wu Z, Yang Y, Nie L, Shan M, Sun K, Song D, Yu F, Li J, Zhao D, Li S, Kang B, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T and Chen X 2022 Nature 611 682 [23] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [24] Zhong Y, Liu J, Wu X, Guguchia Z, et al. 2023 Nature 617 488 [25] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [26] Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 [27] Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y and Wen H H 2020 Nat. Commun. 11 6027 [28] Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, Li Q, Zhu X, Pan X, Nie Y and Wen H H 2021 Nat. Phys. 17 473 [29] Nomura Y and Arita R 2022 Rep. Prog. Phys. 85 052501 [30] Gu Q and Wen H H 2022 The Innovation 3 100202 [31] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M and Wang M 2023 Nature 621 493 [32] Singh Y and Gegenwart P 2010 Phys. Rev. B 82 064412 [33] Liu X, Berlijn T, Yin W G, Ku W, Tsvelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Phys. Rev. B 83 220403(R) [34] Ye F, Chi S, Cao H, Chakoumakos B C, Fernandez-Baca J A, Custelcean R, Qi T F, Korneta O B and Cao G 2012 Phys. Rev. B 85 180403(R) [35] Hwan Chun S, Kim J W, Kim J, et al. 2015 Nat. Phys. 11 462 [36] Chaloupka J, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204 [37] Singh Y, Manni S, Reuther J, Berlijn T, Thomale R, Ku W, Trebst S and Gegenwart P 2012 Phys. Rev. Lett. 108 127203 [38] Sandilands L J, Tian Y, Plumb K W, Kim Y J and Burch K S 2015 Phys. Rev. Lett. 114 147201 [39] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R and Coldea R 2015 Phys. Rev. B 92 235119 [40] Banerjee A, Bridges C A, Yan J Q, et al. 2016 Nat. Mater. 15 733 [41] Sandilands L J, Tian Y, Reijnders A A, Kim H S, Plumb K W, Kim Y J, Kee H Y and Burch K S 2016 Phys. Rev. B 93 075144 [42] Zhou X, Li H, Waugh J A, Parham S, Kim H S, Sears J A, Gomes A, Kee H Y, Kim Y J and Dessau D S 2016 Phys. Rev. B 94 161106(R) [43] Ran K, Wang J, Wang W, Dong Z Y, Ren X, Bao S, Li S, Ma Z, Gan Y, Zhang Y, Park J T, Deng G, Danilkin S, Yu S L, Li J X and Wen J 2017 Phys. Rev. Lett. 118 107203 [44] Wang W, Dong Z Y, Yu S L and Li J X 2017 Phys. Rev. B 96 115103 [45] Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R and Nagler S E 2017 Science 356 1055 [46] Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T and Matsuda Y 2018 Nature 559 227 [47] Pavarini E and Mazin I I 2006 Phys. Rev. B 74 035115 [48] Lee P A and Wen X G 2008 Phys. Rev. B 78 144517 [49] Yu S L, Kang J and Li J X 2009 Phys. Rev. B 79 064517 [50] Daghofer M, Nicholson A, Moreo A and Dagotto E 2010 Phys. Rev. B 81 014511 [51] Fischer M H 2013 New J. Phys. 15 073006 [52] Wang Q E and Zhang F C 2015 Phys. Rev. B 91 214509 [53] Ghosh S and Singh A 2015 New J. Phys. 17 063009 [54] Möckli D and de Mello E V L 2015 EPL 109 17011 [55] Kanamori J 1963 Prog. Theore. Phys. 30 275 [56] Bickers N E and Scalapino D J 1989 Ann. Phys. 193 206 [57] Takimoto T, Hotta T and Ueda K 2004 Phys. Rev. B 69 104504 [58] Dahm T, Tewordt L and Wermbter S 1994 Phys. Rev. B 49 748 [59] Yan X Z and Ting C S 2006 Phys. Rev. Lett. 97 067001 [60] Yao Z J, Li J X and Wang Z D 2009 New J. Phys. 11 025009 [61] Onari S and Kontani H 2012 Phys. Rev. B 85 134507 [62] Yu S L and Li J X 2013 Chinese Phys. B 22 087411 [63] Wang H, Yu S L and Li J X 2015 Phys. Rev. B 91 165138 [64] Sidis Y, Braden M, Bourges P, Hennion B, NishiZaki S, Maeno Y and Mori Y 1999 Phys. Rev. Lett. 83 3320 [65] Braden M, Sidis Y, Bourges P, Pfeuty P, Kulda J, Mao Z and Maeno Y 2002 Phys. Rev. B 66 064522 [66] Mazin I I and Singh D J 1999 Phys. Rev. Lett. 82 4324 [67] Morr D K, Trautman P F and Graf M J 2001 Phys. Rev. Lett. 86 5978 [68] Kuroki K, Ogata M, Arita R and Aoki H 2001 Phys. Rev. B 63 060506(R) [69] Eremin I, Manske D and Bennemann K H 2002 Phys. Rev. B 65 220502(R) [70] Boehnke L, Werner P and Lechermann F 2018 Europhys. Lett. 122 57001 [71] Roer A T, Kreisel A, Müller M A, Hirschfeld P J, Eremin I M and Andersen B M 2020 Phys. Rev. B 102 054506 [72] Roer A T, Scherer D D, Eremin I M, Hirschfeld P J and Andersen B M 2019 Phys. Rev. Lett. 123 247001 [73] Gingras O, Nourafkan R, Tremblay A M S and Coté M 2019 Phys. Rev. Lett. 123 217005 [74] Roer A T, Hirschfeld P J and Andersen B M 2021 Phys. Rev. B 104 064507 [75] Wang Q H, Platt C, Yang Y, Honerkamp C, Zhang F C, Hanke W, Rice T M and Thomale R 2013 Europhys. Lett. 104 17013 [76] See the supplemental material for detailed information on the components of the spin susceptibilities and pairing functions, as well as analytical results regarding pairing interactions in the case of J=0 for the three-orbital model. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|