CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality |
Xue-Feng Zhang(张雪枫)1,†, Je-Ho Shim(沈帝虎)2,†, Xiao-Ping Ma(马晓萍)2,‡, Cheng Song(宋成)3, Haiming Yu(于海明)4, and Hong-Guang Piao(朴红光)1,2,§ |
1 Hubei Engineering Research Center of Weak Magnetic-Field Detection, China Three Gorges University, Yichang 443002, China; 2 Department of Physics, College of Science, Yanbian University, Yanji 133002, China; 3 Key Laboratory of Advanced Materials(MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 4 Fert Beijing Institute, School of Integrated Circuit Science and Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China |
|
|
Abstract We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic simulations. In the system, four scattering behaviors are found: (i) asymmetric skew scattering, depending on the polarity of vortex core, (ii) back scattering (reflection), depending on the vortex core stiffness, (iii) side deflection scattering, depending on structural symmetry of the vortex circulation, and (iv) geometrical scattering, depending on waveguide structure. The first and second scattering behaviors are attributed to nonlinear topological magnon spin Hall effect related to magnon spin-transfer torque effect, which has value for magnonic exploration and application.
|
Received: 09 March 2023
Revised: 08 May 2023
Accepted manuscript online: 09 May 2023
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
|
74.25.Ha
|
(Magnetic properties including vortex structures and related phenomena)
|
|
Fund: Project supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No. 2021R1F1A1050539), the Yanbian University Research Project (Grant No. 482022104), and the Yichang Natural Science Research Project (Grant No. A22-3-010). |
Corresponding Authors:
Xiao-Ping Ma, Hong-Guang Piao
E-mail: xpma1222@ybu.edu.cn;hgpiao@ybu.edu.cn
|
Cite this article:
Xue-Feng Zhang(张雪枫), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(马晓萍), Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(朴红光) Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality 2023 Chin. Phys. B 32 107501
|
[1] Kevrekidis P G, Maraver J C and Saxena A 2020 Emerging Frontiers in Nonlinear Science (New York: Springer) pp. 7-10 [2] Lee O, Yamamoto K, Umeda M, Zollitsch C W, Elyasi M, Kikkawa T, Saitoh E, Bauer G E and Kurebayashi H 2023 Phys. Rev. Lett. 130 046703 [3] Barman A, Gubbiotti G, Ladak S, et al. 2021 J. Phys.: Condens. Matter 33 413001 [4] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1 [5] Garcia S F, Borys P, Soucaille R, Adam J P, Stamps R L and Kim J V 2015 Phys. Rev. Lett. 114 247206 [6] Wang Z, Yuan H Y, Cao Y and Yan P 2022 Phys. Rev. Lett. 129 107203 [7] Li Z, Ma M, Chen Z, Xie K and Ma F 2022 J. Appl. Phys 132 210702 [8] Guslienko K Y, Ivanov B A, Novosad V, Otani Y, Shima H and Fukamichi K 2002 J. Appl. Phys. 91 8037 [9] Park H K, Lee J H, Yang J and Kim S K 2020 J. Appl. Phys. 127 183906 [10] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [11] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001 [12] Liu C, Chen J, Liu T, et al. 2018 Nat. Commun. 9 738 [13] Razdolski I, Alekhin A, Ilin N, Meyburg J P, Roddatis V, Diesing D, Bovensiepen U and Melnikov A 2017 Nat. Commun. 8 15007 [14] Mansfeld S, Topp J, Martens K, Toedt J N, Hansen W, Heitmann D and Mendach S 2012 Phys. Rev. Lett. 108 047204 [15] Toedt J N, Mundkowski M, Heitmann D, Mendach S and Hansen W 2016 Sci. Rep. 6 33169 [16] Papp Á, Porod W, Csurgay Á I and Csaba G 2017 Sci. Rep. 7 9245 [17] Balinskiy M, Chiang H, Gutierrez D and Khitun A 2021 Appl. Phys. Lett. 118 242402 [18] Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049 [19] Szulc K, Graczyk P, Mruczkiewicz M, Gubbiotti G and Krawczyk M 2020 Phys. Rev. Appl. 14 034063 [20] Lee K S and Kim S K 2008 J. Appl. Phys. 104 053909 [21] Chen J, Yu H and Gubbiotti G 2021 J. Phys. D: Appl. Phys. 55 123001 [22] Wang H, Chen J, Liu T, Zhang J, Baumgaertl K, Guo C, Li Y, Liu C, Che P, Tu S, Liu S, Gao P, Han X, Yu D, Wu M, Grundler D and Yu H 2020 Phys. Rev. Lett. 124 027203 [23] Gladii O, Haidar M, Henry Y, Kostylev M and Bailleul M 2016 Phys. Rev. B 93 054430 [24] Kwon J H, Yoon J, Deorani P, Lee J M, Sinha J, Lee K J, Hayashi M and Yang H 2016 Sci. Adv. 2 e1501892 [25] Albisetti E, Petti D, Sala G, Silvani R, Finizio S, Wintz S, Caló A, Zheng X, Raabe J, Riedo E and Bertacco R 2018 Commun. Phys. 1 56 [26] Fernández-Pacheco A, Streubel R, Fruchart O, Hertel R, Fischer P and Cowburn R P 2017 Nat. Commun. 8 15756 [27] Ma X P, Zheng J, Piao H G, Kim D H and Fischer P 2020 Appl. Phys. Lett. 117 062402 [28] Mayr S, Flajšman L, Finizio S, Hrabec A, Weigand M, Förster J, Stoll H, Heyderman L J, Urbánek M, Wintz S and Raabe J 2021 Nano Lett. 21 1584 [29] Chen J, Hu J and Yu H 2021 ACS Nano 15 4372 [30] Wintz S, Tiberkevich V, Weigand M, Raabe J, Lindner J, Erbe A, Slavin A and Fassbender J 2016 Nat. Nanotechnol. 11 948 [31] Chang L J, Chen J, Qu D, Tsai L Z, Liu Y F, Kao M Y, Liang J Z, Wu T S, Chuang T M, Yu H and Lee S F 2020 Nano Lett. 20 3140 [32] Kammerer M, Weigand M, Curcic M, Noske M, Sproll M, Vansteenkiste A, Waeyenberge B V, Stoll H, Woltersdorf G, Back C H and Schuetz G 2011 Nat. Commun. 2 279 [33] Ma X P, Yang H, Li C, Song C and Piao H G 2021 Chin. Phys. Lett. 38 127501 [34] Park J P and Crowell P A 2005 Phys. Rev. Lett. 95 167201 [35] Sproll M, Noske M, Bauer H, Kammerer M, Gangwar A, Dieterle G, Weigand M, Stoll H, Woltersdorf G, Back C H and Schütz G 2014 Appl. Phys. Lett. 104 012409 [36] Ma X P, Cai M X, Li P, Shim J H, Piao H G and Kim D H 2020 J. Magn. Magn. Mater. 502 166481 [37] Uhlíř V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E and Šikola T 2013 Nat. Nanotech. 8 341 [38] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia S F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [39] Nanayakkara K, Jacob A P and Kozhanov A 2015 J. Appl. Phys. 118 163904 [40] Li S, Xia J, Zhang X, Ezawa M, Kang W, Liu X, Zhou Y and Zhao W 2018 Appl. Phys. Lett. 112 142404 [41] Shim J H, Piao H G, Lee S H, Oh S K, Yu S C, Han S K and Kim D H 2011 Appl. Phys. Lett. 99 142505 [42] Shim J H, Piao H G and Kim D H 2014 J. Appl. Phys. 115 17D132 [43] Schütte C and Garst M 2014 Phys. Rev. B 90 094423 [44] Schütte C, Iwasaki J, Rosch A and Nagaosa N 2014 Phys. Rev. B 90 174434 [45] Mochizuki M, Yu X Z, Seki S, Kanazawa N, Koshibae W, Zang J, Mostovoy M, Tokura Y and Nagaosa N 2014 Nat. Mater. 13 241 [46] Lan J and Xiao J 2021 Phys. Rev. B 103 054428 [47] Gao Z, Wang F, Zhao X, Wang T, Hu J and Yan P 2023 arXiv:2212.01172 [cond-mat.mes-hall] [48] Jin Z, Yao X, Wang Z, Yuan H Y, Zeng Z, Cao Y and Yan P 2023 arXiv:2301.03211 [cond-mat.mes-hall] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|