Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 124210    DOI: 10.1088/1674-1056/acfa86
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum

Jiaxin Han(韩嘉鑫)1, Zhong Guan(管仲)1, Beiyu Wang(汪倍羽)1, and Cheng Jin(金成)1,2,†
1 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
2 MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  We calibrate the macroscopic vortex high-order harmonic generation (HHG) obtained by the quantitative rescattering (QRS) model to compute single-atom induced dipoles against that by solving the time-dependent Schrödinger equation (TDSE). We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition, and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good. We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent. This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
Keywords:  high-order harmonic generation      quantitative rescattering model      time-dependent Schrödinger equation      macroscopic propagation      orbital angular momentum      Laguerre-Gaussian beam  
Received:  05 July 2023      Revised:  30 August 2023      Accepted manuscript online:  18 September 2023
PACS:  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12274230, 91950102, and 11834004), the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province of China (Grant No.KYCX23_0443).
Corresponding Authors:  Cheng Jin     E-mail:  cjin@njust.edu.cn

Cite this article: 

Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成) Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum 2023 Chin. Phys. B 32 124210

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Grier D G 2003 Nature 424 810
[3] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willne A E 2012 Nat. Photonics 6 488
[4] Páez-López R, Ruiz U, Arrizon V and Ramos-Garcia R 2016 Opt. Lett. 41 4138
[5] Tao S H, Yuan X C and Lin J 2005 Opt. Express 13 7726
[6] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photonics 7 66
[7] Fürhapter S, Jesacher A, Bernet S and Ritsch-Marte M 2005 Opt. Lett. 30 1953
[8] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F and Roso L 2010 New J. Phys. 12 083053
[9] Alexandrescu A, Cojoc D and Fabrizio E D 2006 Phys. Rev. Lett. 96 243001
[10] Babiker M, Bennett C R, Andrews D L and Romero L C D 2002 Phys. Rev. Lett. 89 143601
[11] Giri S, Ivanov M and Dixit G 2020 Phys. Rev. A 101 033412
[12] Omatsu T, Miyamoto K and Lee A J 2017 J. Opt. 19 123002
[13] Lee J C T, Alexander S J, Kevan S D, Roy S and McMorran B J 2019 Nat. Photonics 13 205
[14] Zhao J, Liu J, Wang X, Yuan J and Zhao Z 2022 Chin. Phys. Lett. 39 123201
[15] Zhang H, Liu X, Jin F, Zhu M, Yang S, Dong W, Song X and Yang W 2021 Chin. Phys. Lett. 38 063201
[16] Li W, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J, Luo S, Liu A, He L, Ma P, Zhang D and Ding D 2021 Chin. Phys. Lett. 38 053202
[17] Li Y, Qin L, Liu A, Zhang K, Tang Q, Zhai C, Xu J, Chen S, Yu B and Chen J 2022 Chin. Phys. Lett. 39 093201
[18] Zürch M, Kern C, Hansinger P, Dreischuh A and Spielmann C 2012 Nat. Phys. 8 743
[19] Hernández-García C, Picón A, Román J S and Plaja L 2013 Phys. Rev. Lett. 111 083602
[20] Gariepy G, Leach J, Kim K T, Hammond T J, Frumker E, Boyd R W and Corkum P B 2014 Phys. Rev. Lett. 113 153901
[21] Géneaux R, Camper A, Auguste T, Gobert O, Caillat J, Taeb R and Ruchon T 2016 Nat. Commun. 7 12583
[22] Rego L, Román J S, Picón A, Plaja L and Hernández-García C 2016 Phys. Rev. Lett. 117 163202
[23] Turpin A, Rego L, Picón A, Román J S and Hernández-García C 2017 Sci. Rep. 7 43888
[24] Hernández-García C, Turpin A, Román J S, Picón A, Drevinskas R, Cerkauskaite A, Kazansky P G, Durfee C G and Sola Í J 2017 Optica 4 520
[25] Hernádez-García C, Vieira J, Mendona J T, Rego L, Román J S, Plaja L, Ribic P R, Gauthier D and Picón A 2017 Photonics 4 28
[26] Paufler W, Bbning B and Fritzsche S 2018 Phys. Rev. A 98 011401
[27] Gauthier D, Kaassamani S, Franz D, et al. 2019 Opt. Lett. 44 546
[28] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, Román J S, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M and Hernández-García C 2019 Science 364 eaaw9486
[29] Kong F, Zhang C, Bouchard F, Li Z, Brown G G, Ko D H, Hammond T J, Arissian L, Boyd R W, Karimi E and Corkum P B 2017 Nat. Commun. 8 14970
[30] Gauthier D, Ribič P R, Adhikary G, Camper A, Chappuis C, Cucini R, DiMauro L F, Dovillaire G, Frassetto F, Géneaux R, Miotti P, Poletto L, Ressel B, Spezzani C, Stupar M, Ruchon T and Ninno G D 2017 Nat. Commun. 8 14971
[31] Jin C, Li B, Wang K, Xu C, Tang X, Yu C and Lin C D 2020 Phys. Rev. A 102 033113
[32] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. Lett. 68 3535
[33] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[34] Gaarde M B and Schafer K J 2002 Phys. Rev. A 65 031406
[35] Priori E, Cerullo G, Nisoli M, Stagira S, Silvestri S D, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R and Lisio C D 2000 Phys. Rev. A 61 063801
[36] Tosa V, Kim H T, Kim I J and Nam C H 2005 Phys. Rev. A 71 063807
[37] Lewenstein M, Balcou P, Ivanov M Y, LprimeHuillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[38] Lin C D, Le A T, Jin C and Wei H 2018 J. Phys. B 51 104001
[39] Morishita T, Le A T, Chen Z and Lin C D 2008 Phys. Rev. Lett. 100 013903
[40] Le A T, Lucchese R R, Tonzani S, Morishita T and Lin C D 2009 Phys. Rev. A 80 013401
[41] Le A T, Picca R D, Fainstein P D, Telnov D A, Lein M and Lin C D 2008 J. Phys. B 41 081002
[42] Tang X, Wang K, Li B, Chen Y, Lin C D and Jin C 2021 Opt. Lett. 46 5137
[43] Li B, Wang K, Tang X, Chen Y, Lin C D and Jin C 2021 New J. Phys. 23 073051
[44] Yin Z, Tang X, Li X, Wang B, Han J, Lin C D and Jin C 2023 Phys. Rev. A 107 013114
[45] Jin C, Le A T and Lin C D 2009 Phys. Rev. A 79 053413
[46] Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F and Brabec T 1999 Phys. Rev. Lett. 83 2930
[47] Takahashi E, Tosa V, Nabekawa Y and Midorikawa K 2003 Phys. Rev. A 68 023808
[48] Chang Z 2004 Phys. Rev. A 70 043802
[49] Gaarde M B, Murakami M and Kienberger R 2006 Phys. Rev. A 74 053401
[50] Picón A, Mompart J, Vázquez de Aldana J R, Plaja L, Calvo G F and Roso L 2010 Opt. Express 18 3660
[51] Le A T, Lucchese R R, Tonzani S, Morishita T and Lin C D 2009 Phys. Rev. A 80 013401
[52] Lin C D, Le A T, Jin C and Wei H 2018 J. Phys. B 51 104001
[53] Abro N, Wang K, Zhu X, Li B and Jin C 2018 Phys. Rev. A 98 023411
[54] Tong X M and Lin C D 2005 J. Phys. B 38 2593
[55] Han J, Tang X, Yin Z, Wang K, Fu Y, Wang B, Chen Y, Zhang C and Jin C 2022 Opt. Express 30 47942
[56] Gaarde M B 2001 Opt. Express 8 529
[57] Yakovlev V S and Scrinzi A 2003 Phys. Rev. Lett. 91 153901
[58] Kim J H, Lee D G, Shin H J and Nam C H 2001 Phys. Rev. A 63 063403
[1] Elliptically polarized high-order harmonic generation in nitrogen molecules with cross-linearly polarized two-color laser fields
Chunyang Zhai(翟春洋), Yinmeng Wu(吴银梦), Lingling Qin(秦玲玲), Xiang Li(李翔), Luke Shi(史璐珂), Ke Zhang(张可), Shuaijie Kang(康帅杰), Zhengfa Li(李整法), Yingbin Li(李盈傧), Qingbin Tang(汤清彬), and Benhai Yu(余本海). Chin. Phys. B, 2023, 32(7): 073301.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[4] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[5] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[6] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[7] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[8] Role of excited states in helium-like ions on high-order harmonic generation
Jiang-Hua Luo(罗江华) and Jia-Jun Xiao(肖佳俊). Chin. Phys. B, 2023, 32(11): 113201.
[9] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[13] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[14] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[15] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
No Suggested Reading articles found!