Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064213    DOI: 10.1088/1674-1056/ab836c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere

Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷)
National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China
Abstract  The analytical expression of off-axis hollow Gaussian-Schell model vortex beam (HGSMVB) generated by anisotropic Gaussian-Schell model source is first introduced. The evolution properties of off-axis HGSMVB propagating in turbulent atmosphere are analyzed. The results show that the off-axis HGSMVB with smaller coherence length or propagating in stronger turbulent atmosphere will evolve from dark hollow beam into Gaussian-like beam with a larger beam spot faster. The beams with different values of integer order N or the position for hollow and vortex factor R will have almost the same Gaussian-like spot distribution at the longer propagation distance.
Keywords:  vortex beam      off-axis beam      Gaussian-Schell model sources      laser propagation      intensity  
Received:  26 August 2019      Revised:  24 February 2020      Accepted manuscript online: 
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20180101031JC) and the Jilin Provincial Science Foundation for Basic Research, China (Grant No. 2019C040-7).
Corresponding Authors:  Ke-Yan Dong     E-mail:  dongkeyan2018@sohu.com

Cite this article: 

Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷) Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere 2020 Chin. Phys. B 29 064213

[1] Wang F, Liu X L and Cai Y J 2015 Prog. Electromagn. Res. 150 123
[2] Salem M, Korotkova O, Dogariu A and Wolf E 2004 Waves Random Media 14 513
[3] Roychowdhury H, Ponomarenko S A and Wolf E 2005 J. Mod. Opt. 52 1611
[4] Cai Y J, Lin Q, Baykal Y and Eyyuboglu H T 2007 Opt. Commun. 278 157
[5] Ji X and Ji G 2008 Appl. Phys. B 92 111
[6] Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2009 Appl. Opt. 48 5251
[7] Zhou G and Chu X 2010 Appl. Phys. B 100 909
[8] Wang F, Cai Y, Eyyuboglu H T and Baykal Y 2011 Appl. Phys. B 103 461
[9] Wang D, Wang F, Cai Y and Chen J 2012 J. Mod. Opt. 59 372
[10] Razzaghi D, Hajiesmaeilbaigi F and Alavinejad M 2013 Optik 124 2135
[11] Wang K L and Zhao C H 2014 Opt. Laser Technol. 57 44
[12] Zhu Z R, Liu L, Wang F and Cai Y J 2015 J. Opt. Soc. Am. A 32 374
[13] Liu D J, Wang Y C and Yin H M 2016 Opt. Laser Technol. 78 95
[14] Liu H L, Lu Y F, Xia J, Chen D, He W and Pu X Y 2016 Opt. Express 24 19695
[15] Zhu J, Li X, Tang H and Zhu K 2017 Opt. Express 25 20071
[16] Liu D, Yin H, Wang G and Wang Y 2017 Appl. Opt. 56 8785
[17] Tian H H, Xu Y G, Yang T, Ma Z R, Wang S J and Dan Y Q 2017 J. Mod. Opt. 64 422
[18] Liu D J, Luo X X, Yin H M, Wang G Q and Wang Y C 2017 Optik 130 227
[19] Wang F, Li J, Martinez-Piedra G and Korotkova O 2017 Opt. Express 25 26055
[20] Liu D, Wang G and Wang Y 2018 Opt. Laser Technol. 98 309
[21] Liu D and Wang Y 2018 Opt. Laser Technol. 103 33
[22] Hu Y, Dong X, Zhao N, Zhao X and Xu S 2019 Opt. Commun. 436 82
[23] Liu D, Wang G, Yin H, Zhong H and Wang Y 2019 Opt. Commun. 437 346
[24] Zhang W F, Lian J, Wang Y S, Hu X Y, Sun M L, Zhao M L, Wang Y and Li M M 2015 Chin. Phys. Lett. 32 64204
[25] Yin X L, Guo Y L, Yan H, Cui X Z, Chang H, Tian Q H, Wu G H, Zhang Q, Liu B and Xin X J 2018 Acta Phys. Sin. 67 114201 (in Chinese)
[26] Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
[27] Liu D J, Wang Y C, Wang G Q, Yin H M and Zhong H Y 2019 Chin. Phys. B 28 104207
[28] Ma X L, Liu D J, Wang Y C, Yin H M, Zhong H Y and Wang G Q 2020 Appl. Sci. 10 450
[29] Zheng C W 2006 J. Opt. Soc. Am. A 23 2161
[30] Wang K L and Zhao C L 2015 Opt. Commun. 334 280
[31] Li L, Huan Y Z, Wang Y C, Hua D, Yang X, Liu D J and Wang Y C 2019 Optik 194 163133
[32] Chen G, Huang X, Xu C, Huang L, Xie J and Deng D 2019 Opt. Express 27 6357
[33] Li Y and Wolf E 1982 Opt. Lett. 7 256
[34] Wolf E 2003 Phys. Lett. A 312 263
[35] Eyyuboglu H T, Baykal Y and Sermutlu E 2006 Opt. Commun. 265 399
[1] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[5] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[6] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[7] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[8] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[9] Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 108701.
[10] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[11] Charge disturbance/excitation in the Raman virtual state revealed by ROA signal: A case study of pinane
Ziqi Zhu(祝子祺), Peijie Wang(王培杰), and Guozhen Wu(吴国祯). Chin. Phys. B, 2021, 30(6): 063101.
[12] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[13] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[14] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[15] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
No Suggested Reading articles found!