ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere |
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷) |
National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract The analytical expression of off-axis hollow Gaussian-Schell model vortex beam (HGSMVB) generated by anisotropic Gaussian-Schell model source is first introduced. The evolution properties of off-axis HGSMVB propagating in turbulent atmosphere are analyzed. The results show that the off-axis HGSMVB with smaller coherence length or propagating in stronger turbulent atmosphere will evolve from dark hollow beam into Gaussian-like beam with a larger beam spot faster. The beams with different values of integer order N or the position for hollow and vortex factor R will have almost the same Gaussian-like spot distribution at the longer propagation distance.
|
Received: 26 August 2019
Revised: 24 February 2020
Accepted manuscript online:
|
PACS:
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grant No. 20180101031JC) and the Jilin Provincial Science Foundation for Basic Research, China (Grant No. 2019C040-7). |
Corresponding Authors:
Ke-Yan Dong
E-mail: dongkeyan2018@sohu.com
|
Cite this article:
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷) Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere 2020 Chin. Phys. B 29 064213
|
[1] |
Wang F, Liu X L and Cai Y J 2015 Prog. Electromagn. Res. 150 123
|
[2] |
Salem M, Korotkova O, Dogariu A and Wolf E 2004 Waves Random Media 14 513
|
[3] |
Roychowdhury H, Ponomarenko S A and Wolf E 2005 J. Mod. Opt. 52 1611
|
[4] |
Cai Y J, Lin Q, Baykal Y and Eyyuboglu H T 2007 Opt. Commun. 278 157
|
[5] |
Ji X and Ji G 2008 Appl. Phys. B 92 111
|
[6] |
Zhou P, Ma Y X, Wang X L, Ma H T, Xu X J and Liu Z J 2009 Appl. Opt. 48 5251
|
[7] |
Zhou G and Chu X 2010 Appl. Phys. B 100 909
|
[8] |
Wang F, Cai Y, Eyyuboglu H T and Baykal Y 2011 Appl. Phys. B 103 461
|
[9] |
Wang D, Wang F, Cai Y and Chen J 2012 J. Mod. Opt. 59 372
|
[10] |
Razzaghi D, Hajiesmaeilbaigi F and Alavinejad M 2013 Optik 124 2135
|
[11] |
Wang K L and Zhao C H 2014 Opt. Laser Technol. 57 44
|
[12] |
Zhu Z R, Liu L, Wang F and Cai Y J 2015 J. Opt. Soc. Am. A 32 374
|
[13] |
Liu D J, Wang Y C and Yin H M 2016 Opt. Laser Technol. 78 95
|
[14] |
Liu H L, Lu Y F, Xia J, Chen D, He W and Pu X Y 2016 Opt. Express 24 19695
|
[15] |
Zhu J, Li X, Tang H and Zhu K 2017 Opt. Express 25 20071
|
[16] |
Liu D, Yin H, Wang G and Wang Y 2017 Appl. Opt. 56 8785
|
[17] |
Tian H H, Xu Y G, Yang T, Ma Z R, Wang S J and Dan Y Q 2017 J. Mod. Opt. 64 422
|
[18] |
Liu D J, Luo X X, Yin H M, Wang G Q and Wang Y C 2017 Optik 130 227
|
[19] |
Wang F, Li J, Martinez-Piedra G and Korotkova O 2017 Opt. Express 25 26055
|
[20] |
Liu D, Wang G and Wang Y 2018 Opt. Laser Technol. 98 309
|
[21] |
Liu D and Wang Y 2018 Opt. Laser Technol. 103 33
|
[22] |
Hu Y, Dong X, Zhao N, Zhao X and Xu S 2019 Opt. Commun. 436 82
|
[23] |
Liu D, Wang G, Yin H, Zhong H and Wang Y 2019 Opt. Commun. 437 346
|
[24] |
Zhang W F, Lian J, Wang Y S, Hu X Y, Sun M L, Zhao M L, Wang Y and Li M M 2015 Chin. Phys. Lett. 32 64204
|
[25] |
Yin X L, Guo Y L, Yan H, Cui X Z, Chang H, Tian Q H, Wu G H, Zhang Q, Liu B and Xin X J 2018 Acta Phys. Sin. 67 114201 (in Chinese)
|
[26] |
Cui X Z, Yin X L, Chang H, Zhang Z C, Wang Y J and Wu G H 2017 Chin. Phys. B 26 114207
|
[27] |
Liu D J, Wang Y C, Wang G Q, Yin H M and Zhong H Y 2019 Chin. Phys. B 28 104207
|
[28] |
Ma X L, Liu D J, Wang Y C, Yin H M, Zhong H Y and Wang G Q 2020 Appl. Sci. 10 450
|
[29] |
Zheng C W 2006 J. Opt. Soc. Am. A 23 2161
|
[30] |
Wang K L and Zhao C L 2015 Opt. Commun. 334 280
|
[31] |
Li L, Huan Y Z, Wang Y C, Hua D, Yang X, Liu D J and Wang Y C 2019 Optik 194 163133
|
[32] |
Chen G, Huang X, Xu C, Huang L, Xie J and Deng D 2019 Opt. Express 27 6357
|
[33] |
Li Y and Wolf E 1982 Opt. Lett. 7 256
|
[34] |
Wolf E 2003 Phys. Lett. A 312 263
|
[35] |
Eyyuboglu H T, Baykal Y and Sermutlu E 2006 Opt. Commun. 265 399
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|