Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104208    DOI: 10.1088/1674-1056/acc1d0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition

Sheng-Jie Ma(马圣杰)1,2, Shi-Long Xu(徐世龙)1,2,†, Xiao Dong(董骁)1,2, Xin-Yuan Zhang(张鑫源)1,2, You-Long Chen(陈友龙)1,2, and Yi-Hua Hu(胡以华)1,2,‡
1 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China;
2 Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology, Hefei 230037, China
Abstract  The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition. It is found that the rotational Doppler signal frequency spectrum will be broadened, and the bandwidth is related to the turbulence intensity. In addition, as the propagation distance increases, the bandwidth also increases. And when $C_{n}^{2} \le 5\times 10^{-15}$ m$^{-2/3}$ and $2z\le 2$ km, the rotational Doppler signal frequency spectrum width $d$ and the spiral spectrum width $d_{0}$ satisfy the relationship $d=2d_{0} -1$. Finally, we analyze the influence of mode crosstalk on the rotational Doppler effect, and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about $2l\cdot \varOmega /2\pi$. This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
Keywords:  optical rotational Doppler effect      atmospheric turbulence      vortex beam      mode decomposition      mode crosstalk  
Received:  20 August 2022      Revised:  02 February 2023      Accepted manuscript online:  07 March 2023
PACS:  42.68.Bz (Atmospheric turbulence effects)  
  92.10.Lq (Turbulence, diffusion, and mixing processes in oceanography)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
Fund: Project supported by the Research Plan Project of the National University of Defense Technology (Grant No. ZK18-01-02), the National Natural Science Foundation of China (Grant No. 61871389), the State Key Laboratory of Pulsed Power Laser Technology (Grant No. KY21C604), and the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant Nos. CX20220007 and CX20230024).
Corresponding Authors:  Shi-Long Xu, Yi-Hua Hu     E-mail:  xushi1988@yeah.net;skl_hyh@163.com

Cite this article: 

Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华) Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition 2023 Chin. Phys. B 32 104208

[1] Truax B E, Demarest F C and Sommargren G E 1984 Appl. Opt. 23 67
[2] Seddon N and Bearpark T 2003 Science 302 1537
[3] Ding Y, Ren Y, Liu T, Qiu S, Wang C, Li Z and Liu Z 2021 Opt. Express 29 15288
[4] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537
[5] Qiu S, Ren Y, Liu T, Li Z, Liu Z, Wang C, Ding Y and Sha Q 2021 Opt. Express 29 10275
[6] Zhai Y, Fu S, Zhang J, Lv Y, Zhou H and Gao C 2020 Appl. Phys. Express 13 022012
[7] Ding Y, Ren Y, Liu T, Qiu S, Wang C, Li Z and Liu Z 2021 Opt. Express 29 15288
[8] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[9] Huang H, Xie G, Yan Y, Ahmed N, Ren Y, Yue Y, Rogawski D, Willner M J, Erkmen B I, Birnbaum K M, Dolinar S J, Lavery M P J, Padgett M J, Tur M and Willner A E 2014 Opt. Lett. 39 197
[10] Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P J, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A and Willner A E 2016 Opt. Lett. 41 622
[11] Li L, Zhang R, Liao P, Cao Y, Song H, Zhao Y, Du J, Zhao Z, Liu C, Pang K, Song H, Almaiman A, Starodubov D, Lynn B, Bock R, Tur M, Molisch A F and Willner A E 2019 Opt. Lett. 44 5181
[12] Grier D G 2003 Nature 424 810
[13] Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P and Yuan X 2015 Sci. Rep. 5 15446
[14] Zhai Y, Fu S, Yin C, Zhou H and Gao C 2019 Opt. Express 27 15518
[15] Ding Y, Liu T, Qiu S, Liu Z, Sha Q and Ren Y 2022 Appl. Opt. 61 3919
[16] Qiu S, Liu T, Ren Y, Li Z, Wang C and Shao Q 2019 Opt. Express 27 24781
[17] Qiu S, Liu T, Li Z, Wang C, Ren Y, Shao Q and Xing C 2019 Appl. Opt. 58 2650
[18] Zhang Z, Cen L, Zhang J, Hu J, Wang F and Zhao Y 2020 Opt. Express 28 6859
[19] Zhang W, Gao J, Zhang D, He Y, Xu T, Fickler R and Chen L 2018 Phys. Rev. Appl. 10 044014
[20] Paterson C 2005 Phy. Rev. Lett. 94 153901
[21] Li S, Chen S, Gao C, Willner A E and Wang J 2018 Opt. Commun. 408 68
[22] Zheng D, Li Y, Zhou H, Bian Y, Yang C, Li W, Qiu J, Guo H, Hong X, Zuo Y, Giles I P, Tong W and Wu J 2018 Opt. Express 26 28879
[23] Wang Y, Xu H, Li D, Wang R, Jin C, Yin X, Gao S, Mu Q, Xuan L and Cao Z 2018 Sci. Rep. 8 1124
[24] Qiu S, Ren Y, Sha Q, Ding Y, Wang C, Li Z and Liu T 2021 Opt. Commun. 490 126900
[25] Fu S, Wang T, Zhang Z, Zhai Y and Gao C 2017 Opt. Express 25 20098
[26] Fang L, Padgett M J and Wang J 2017 Laser Photonics Rev. 11 1700183
[27] Lavery M P J, Barnett S M, Speirits F C and Padgett M J 2014 Optica 1 1
[28] Zhou H, Fu D, Dong J, Zhang P and Zhang X 2016 Opt. Express 24 10050
[29] Zeng J, Liu X, Zhao C, Wang F, Gbur G and Cai Y 2019 Opt. Express 27 25342
[30] Zhang L, Shen F, Lan B and Tang A 2020 Journal of Optics 22 075607
[31] Lv H, Ren C and Liu X 2020 Infrared Phys. Technol. 105 103181
[1] Ultraviolet metalens and metalens array of focused vortex beams
Jinping Zhang(张金平), Yan Wang(王焱), Huan Yuan(袁欢), Zehao Wang(王泽豪), Yang Deng(邓阳),Chengzhi Huang(黄承志), Jiagui Wu(吴加贵), and Junbo Yang(杨俊波). Chin. Phys. B, 2023, 32(6): 064206.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[5] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[6] Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 108701.
[7] High efficiency and broad bandwidth terahertz vortex beam generation based on ultra-thin transmission Pancharatnam-Berry metasurfaces
Wenyu Li(李文宇), Guozhong Zhao(赵国忠), Tianhua Meng(孟田华), Ran Sun(孙然), and Jiaoyan Guo(郭姣艳). Chin. Phys. B, 2021, 30(5): 058103.
[8] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[9] A crossed focused vortex beam with application to cold molecules
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平). Chin. Phys. B, 2021, 30(11): 114202.
[10] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[11] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[12] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[13] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[14] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
[15] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
No Suggested Reading articles found!