INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation |
Wen-Yu Li(李文宇)1,2, Ran Sun(孙然)1, Jing-Yu Liu(刘靖宇)1, Tian-Hua Meng(孟田华)2, and Guo-Zhong Zhao(赵国忠)1,† |
1. Department of Physics, Capital Normal University, Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048, China; 2. Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China |
|
|
Abstract The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturization and integration of metasurface devices. However, these devices work typically under a low efficiency and narrow bandwidth condition. In this work, we design eight multilayered unit cells with similar amplitudes and a phase interval of π/4, which convert the polarization states of the terahertz (THz) waves between two orthogonal directions. The average cross-polarized transmission amplitudes of these cells are all around 0.9 in an ultra-broad frequency range from 0.5 THz to 1.4 THz. Furthermore, unit cells are used to construct both an ultra-thin anomalous refraction metalens and a vortex phase plate. Our simulation results show that the anomalous refraction for the transmitted linear polarization component is comparable to the theoretical prediction, and the maximum error is determined to be below 4.8%. The vortex phase plate can also generate an ideal terahertz vortex beam with a mode purity of 90% and more. The distributions of longitudinal electric field, intensity, and phase illustrate that the generated vortex beam has excellent propagation characteristics and a weak divergence. Simulations of the two types of metasurface devices, based on the eight unit cells, exhibit very high efficiencies in a wide bandwidth. Our research will assist in the improvement in the practical applications of metasurfaces. It also provides a reference for the design of high efficiency and broadband devices that are applied to other frequency ranges.
|
Received: 18 March 2022
Revised: 21 April 2022
Accepted manuscript online:
|
PACS:
|
87.50.U-
|
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
42.25.Gy
|
(Edge and boundary effects; reflection and refraction)
|
|
74.25.Uv
|
(Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071312), the National Key Research and Development Program of China (Grant No. 2021YFB3200100), the Important Research and Development Projects of Shanxi Province, China (Grant No. 201803D121083), and the Fund from the Shanxi Scholarship Council, China (Grant No. 2020-135). |
Corresponding Authors:
Guo-Zhong Zhao
E-mail: guozhong-zhao@cnu.edu.cn
|
Cite this article:
Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠) Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation 2022 Chin. Phys. B 31 108701
|
[1] Yang Y M, Wang W Y, Moitra P, Kravchenko I I, Briggs D P and Valentine J 2014 Nano Lett. 14 1394 [2] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428 [3] Li R Z, Guo Z Y, Wang W, Zhang J R, Zhang A J, Liu J L, Qu S L and Gao J 2014 Opt. Express 22 27968 [4] Liu S, Noor A, Du L L, Zhang L, Xu Q, Luan K, Wang T Q, Tian Z, Tang W X, Han J G, Zhang W L, Zhou X Y, Cheng Q and Cui T J 2016 ACS Photon. 3 1968 [5] Wen D D, Yue F Y, Kumar S, Ma Y, Chen M, Ren X M, Kremer P E, Gerardot B D, Taghizadeh M R, Buller G S and Chen X Z 2015 Opt. Express 23 010272 [6] Lu Y C, Feng X, Wang Q W, Zhang X Q, Fang M, Sha W, Huang Z X, Xu Q, Niu L, Chen X Y, Ouyang C M, Yang Y M, Zhang X X, Plum E, Zhang S, Han J G and Zhang W L 2021 Nano Lett. 21 7699 [7] item Niu L, Xu Q, Zhang X Q, Zhang Z Y, Li S X, Chen X Y, Xu Y H, Ma J J, Kang M, Han J G and Zhang W L 2021 ACS Appl. Mater. Inter. 13 5844 [8] item Wu T, Zhang X Q, Xu Q, Plum E, Chen K J, Xu Y H, Lu Y C, Zhang H F, Zhang Z Y, Chen X Y, Ren G H, Niu L, Tian Z, Han J G and Zhang W L 2021 Adv. Opt. Mater. 10 2101223 [9] Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q and Fan D Y 2020 Acta Phys. Sin. 69 014101 (in Chinese) [10] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205 [11] Wang H G, Song Q Y, Cai Y, Lin Q G, Lu X W, Shangguan H C, Ai Y X and Xu S X 2020 Chin. Phys. B 29 097404 [12] Bi F, Ba Z L and Wang X 2018 Opt. Express 26 25693 [13] Ran Y Z, Liang J G, Cai T and Li H P 2018 Opt. Commun. 427 101 [14] Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin. 68 238101 (in Chinese) [15] Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932 [16] Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G and Zhang W L 2015 Adv. Optical Mater. 3 779 [17] Ding X M, Wu Y M, Zhang K, Yu H and Wu Q 2014 J. Phys. D: Appl. Phys. 47 275302 [18] Wang W, Guo Z Y, Li R Z, Zhang J R, Zhang A J, Li Y, Liu Y, Wang X H and Qu S L 2015 J. Opt. 17 065103 [19] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190 [20] Wang S M, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Lin R M, Kuan C H, Li T, Wang Z L, Zhu S N and Tsai D P 2018 Nat. Nanotechnol. 13 227 [21] Luo W J, Sun S L, Xu H X, He Q and Zhou L 2017 Phys. Rev. Appl. 7 044033 [22] Yin X B, Ye Z L, Rho J, Wang Y and Zhang X 2013 Science 339 1405 [23] Wang W, Guo C, Zhao Z H, Li J and Shi Y 2020 Results in Physics 17 103033 [24] Zhang K, Yuan Y Y, Zhang D W, Ding X M, Bsdreddine R, Burokur S N, Lu M J, Tang K and Wu Q 2018 Opt. Express 26 1351 [25] Li W Y, Zhao G Z, Meng T H, Sun R and Guo J Y 2021 Chin. Phys. B 30 058103 [26] Zhao H, Wang X K, He J W, Guo J Y, Ye J S, Kan Q and Zhang Y 2017 Sci. Rep. 7 17882 [27] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333 [28] Monticone F, Estakhri N M and Alù A 2013 Phys. Rev. Lett. 110 203903 [29] Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M and Zhu W R 2019 Adv. Opt. Mater. 7 1801628 [30] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304 [31] Cheng Y Z, Gong R Z and Wu L 2017 Plasmonics 12 1113 [32] Tang S W, Li X K, Pan W K, Zhou J, Jiang T and Ding F 2019 Opt. Express 27 4281 [33] Song K, Liu Y H, Luo C R and Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104 [34] Chen H Y, Ma H, Wang J F, Qu S B, Pang Y Q, Yan M B and Li Y F 2016 Appl. Phys. 122 463 [35] Zhang D J, Lin Z S, Liu J, Zhang J L, Zhang Z P, Hao Z C and Wang X 2020 Opt. Mater. Express 10 1531 [36] Cheng Y, Li Y F, Wang H, Chen H Y, Wan W P, Wang J F, Zheng L, Zhang J Q and Qu S B 2021 Adv. Opt. Mater. 9 2002242 [37] Liu C B, Bai Y, Zhao Q, Yang Y H, Chen H S, Zhou J and Qiao L J 2016 Sci. Rep. 6 34819 [38] Chen M, Jiang L J and Sha W 2018 Appl. Sci. 8 362 [39] Lin Z S, Ba Z L and Wang X 2020 IEEE Photon. J. 12 4600611 [40] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [41] Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M and Johnson E G 2016 Opt. Express 24 9794 [42] Yuan Y Y, Zhang K, Ding X M, Ratni B, Burokur S N and Wu Q 2019 Photon. Res. 7 80 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|