Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108701    DOI: 10.1088/1674-1056/ac70bd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation

Wen-Yu Li(李文宇)1,2, Ran Sun(孙然)1, Jing-Yu Liu(刘靖宇)1, Tian-Hua Meng(孟田华)2, and Guo-Zhong Zhao(赵国忠)1,†
1. Department of Physics, Capital Normal University, Beijing Key Laboratory for THz Spectroscopy and Imaging, Key Laboratory of THz Optoelectronics, Ministry of Education, Beijing 100048, China;
2. Institute of Solid State Physics, Shanxi Datong University, Datong 037009, China
Abstract  The applications of metasurfaces are currently a highly active research field due to their extraordinary ability to manipulate electromagnetic waves. The ultra-thin characteristics of metasurfaces allow the miniaturization and integration of metasurface devices. However, these devices work typically under a low efficiency and narrow bandwidth condition. In this work, we design eight multilayered unit cells with similar amplitudes and a phase interval of π/4, which convert the polarization states of the terahertz (THz) waves between two orthogonal directions. The average cross-polarized transmission amplitudes of these cells are all around 0.9 in an ultra-broad frequency range from 0.5 THz to 1.4 THz. Furthermore, unit cells are used to construct both an ultra-thin anomalous refraction metalens and a vortex phase plate. Our simulation results show that the anomalous refraction for the transmitted linear polarization component is comparable to the theoretical prediction, and the maximum error is determined to be below 4.8%. The vortex phase plate can also generate an ideal terahertz vortex beam with a mode purity of 90% and more. The distributions of longitudinal electric field, intensity, and phase illustrate that the generated vortex beam has excellent propagation characteristics and a weak divergence. Simulations of the two types of metasurface devices, based on the eight unit cells, exhibit very high efficiencies in a wide bandwidth. Our research will assist in the improvement in the practical applications of metasurfaces. It also provides a reference for the design of high efficiency and broadband devices that are applied to other frequency ranges.
Keywords:  terahertz      metasurface      anomalous refraction      vortex beam generation  
Received:  18 March 2022      Revised:  21 April 2022      Accepted manuscript online: 
PACS:  87.50.U-  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071312), the National Key Research and Development Program of China (Grant No. 2021YFB3200100), the Important Research and Development Projects of Shanxi Province, China (Grant No. 201803D121083), and the Fund from the Shanxi Scholarship Council, China (Grant No. 2020-135).
Corresponding Authors:  Guo-Zhong Zhao     E-mail:  guozhong-zhao@cnu.edu.cn

Cite this article: 

Wen-Yu Li(李文宇), Ran Sun(孙然), Jing-Yu Liu(刘靖宇), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠) Broadband and high efficiency terahertz metasurfaces for anomalous refraction and vortex beam generation 2022 Chin. Phys. B 31 108701

[1] Yang Y M, Wang W Y, Moitra P, Kravchenko I I, Briggs D P and Valentine J 2014 Nano Lett. 14 1394
[2] Zhao Y and Alù A 2011 Phys. Rev. B 84 205428
[3] Li R Z, Guo Z Y, Wang W, Zhang J R, Zhang A J, Liu J L, Qu S L and Gao J 2014 Opt. Express 22 27968
[4] Liu S, Noor A, Du L L, Zhang L, Xu Q, Luan K, Wang T Q, Tian Z, Tang W X, Han J G, Zhang W L, Zhou X Y, Cheng Q and Cui T J 2016 ACS Photon. 3 1968
[5] Wen D D, Yue F Y, Kumar S, Ma Y, Chen M, Ren X M, Kremer P E, Gerardot B D, Taghizadeh M R, Buller G S and Chen X Z 2015 Opt. Express 23 010272
[6] Lu Y C, Feng X, Wang Q W, Zhang X Q, Fang M, Sha W, Huang Z X, Xu Q, Niu L, Chen X Y, Ouyang C M, Yang Y M, Zhang X X, Plum E, Zhang S, Han J G and Zhang W L 2021 Nano Lett. 21 7699
[7] item Niu L, Xu Q, Zhang X Q, Zhang Z Y, Li S X, Chen X Y, Xu Y H, Ma J J, Kang M, Han J G and Zhang W L 2021 ACS Appl. Mater. Inter. 13 5844
[8] item Wu T, Zhang X Q, Xu Q, Plum E, Chen K J, Xu Y H, Lu Y C, Zhang H F, Zhang Z Y, Chen X Y, Ren G H, Niu L, Tian Z, Han J G and Zhang W L 2021 Adv. Opt. Mater. 10 2101223
[9] Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu J M, Zhou X X, Li Y, Chen S Q and Fan D Y 2020 Acta Phys. Sin. 69 014101 (in Chinese)
[10] Lin B Q, Lv L T, Guo J X, Wang Z L, Huang S Q and Wang Y W 2020 Chin. Phys. B 29 104205
[11] Wang H G, Song Q Y, Cai Y, Lin Q G, Lu X W, Shangguan H C, Ai Y X and Xu S X 2020 Chin. Phys. B 29 097404
[12] Bi F, Ba Z L and Wang X 2018 Opt. Express 26 25693
[13] Ran Y Z, Liang J G, Cai T and Li H P 2018 Opt. Commun. 427 101
[14] Li X N, Zhou L and Zhao G Z 2019 Acta Phys. Sin. 68 238101 (in Chinese)
[15] Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z and Capasso F 2012 Nano Lett. 12 4932
[16] Wang Q, Zhang X Q, Xu Y H, Tian Z, Gu J Q, Yue W S, Zhang S, Han J G and Zhang W L 2015 Adv. Optical Mater. 3 779
[17] Ding X M, Wu Y M, Zhang K, Yu H and Wu Q 2014 J. Phys. D: Appl. Phys. 47 275302
[18] Wang W, Guo Z Y, Li R Z, Zhang J R, Zhang A J, Li Y, Liu Y, Wang X H and Qu S L 2015 J. Opt. 17 065103
[19] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y and Capasso F 2016 Science 352 1190
[20] Wang S M, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Lin R M, Kuan C H, Li T, Wang Z L, Zhu S N and Tsai D P 2018 Nat. Nanotechnol. 13 227
[21] Luo W J, Sun S L, Xu H X, He Q and Zhou L 2017 Phys. Rev. Appl. 7 044033
[22] Yin X B, Ye Z L, Rho J, Wang Y and Zhang X 2013 Science 339 1405
[23] Wang W, Guo C, Zhao Z H, Li J and Shi Y 2020 Results in Physics 17 103033
[24] Zhang K, Yuan Y Y, Zhang D W, Ding X M, Bsdreddine R, Burokur S N, Lu M J, Tang K and Wu Q 2018 Opt. Express 26 1351
[25] Li W Y, Zhao G Z, Meng T H, Sun R and Guo J Y 2021 Chin. Phys. B 30 058103
[26] Zhao H, Wang X K, He J W, Guo J Y, Ye J S, Kan Q and Zhang Y 2017 Sci. Rep. 7 17882
[27] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[28] Monticone F, Estakhri N M and Alù A 2013 Phys. Rev. Lett. 110 203903
[29] Akram M R, Mehmood M Q, Bai X D, Jin R H, Premaratne M and Zhu W R 2019 Adv. Opt. Mater. 7 1801628
[30] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R and Chen H T 2013 Science 340 1304
[31] Cheng Y Z, Gong R Z and Wu L 2017 Plasmonics 12 1113
[32] Tang S W, Li X K, Pan W K, Zhou J, Jiang T and Ding F 2019 Opt. Express 27 4281
[33] Song K, Liu Y H, Luo C R and Zhao X P 2014 J. Phys. D: Appl. Phys. 47 505104
[34] Chen H Y, Ma H, Wang J F, Qu S B, Pang Y Q, Yan M B and Li Y F 2016 Appl. Phys. 122 463
[35] Zhang D J, Lin Z S, Liu J, Zhang J L, Zhang Z P, Hao Z C and Wang X 2020 Opt. Mater. Express 10 1531
[36] Cheng Y, Li Y F, Wang H, Chen H Y, Wan W P, Wang J F, Zheng L, Zhang J Q and Qu S B 2021 Adv. Opt. Mater. 9 2002242
[37] Liu C B, Bai Y, Zhao Q, Yang Y H, Chen H S, Zhou J and Qiao L J 2016 Sci. Rep. 6 34819
[38] Chen M, Jiang L J and Sha W 2018 Appl. Sci. 8 362
[39] Lin Z S, Ba Z L and Wang X 2020 IEEE Photon. J. 12 4600611
[40] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488
[41] Baghdady J, Miller K, Morgan K, Byrd M, Osler S, Ragusa R, Li W Z, Cochenour B M and Johnson E G 2016 Opt. Express 24 9794
[42] Yuan Y Y, Zhang K, Ding X M, Ratni B, Burokur S N and Wu Q 2019 Photon. Res. 7 80
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[7] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[10] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[11] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[12] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[13] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[14] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[15] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
No Suggested Reading articles found!