Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114202    DOI: 10.1088/1674-1056/abf915
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A crossed focused vortex beam with application to cold molecules

Meng Xia(夏梦)1, Yaling Yin(尹亚玲)1,†, Chunying Pei(裴春莹)1, Yuer Ye(叶玉儿)1, Ruoxi Gu(顾若溪)1, Kang Yan(严康)1, Di Wu(吴迪)1, Yong Xia(夏勇)1,2,3, and Jianping Yin(印建平)1,‡
1 State Key Laboratory of Precision Apectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China
Abstract  We report the generation of a crossed, focused, optical vortex beam by using a pair of hybrid holograms, which combine the vortex phase and lens phase onto a spatial light modulator. We study the intensity distributions of the vortex beam in free propagation space, and the relationship of its dark spot size with the incident Gaussian beam's waist, the lens's focal length, and its orbital angular momentum. Our results show that the crossed, focused, vortex beam's dark spot size can be as small as 16.3μm and adjustable by the quantum number of the orbital angular momentum, and can be used to increase the density of trapped molecules. Furthermore, we calculate the optical potential of the blue-detuned, crossed vortex beam for MgF molecules. It is applicable to cool and trap neutral molecules by intensity-gradient-induced Sisyphus cooling, as the intensity gradient of such vortex beam is extremely high near the focal point.
Keywords:  cold molecule      crossed focused vortex beam      propagation characteristics      optical potential  
Received:  17 March 2021      Revised:  14 April 2021      Accepted manuscript online:  19 April 2021
PACS:  42.40.Jv (Computer-generated holograms)  
  37.10.Mn (Slowing and cooling of molecules)  
  87.80.Cc (Optical trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834003 and 91836103).
Corresponding Authors:  Yaling Yin, Jianping Yin     E-mail:  ylyin@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn

Cite this article: 

Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平) A crossed focused vortex beam with application to cold molecules 2021 Chin. Phys. B 30 114202

[1] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[2] Bohn J L, Rey A M and Ye J 2017 Science 357 1002
[3] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286
[4] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173
[5] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201
[6] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[7] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201
[8] Cheuk L W, Anderegg L, Augenbraun B L, Bao Y C, Burchesky S, Ketterle W and Doyle J M 2018 Phys. Rev. Lett. 121 083201
[9] Caldwell L, Devlin J A, Williams H J, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2019 Phys. Rev. Lett. 123 033202
[10] Ding S Q, Wu Y W, Finneran I A, Burau J J and Ye J 2020 Phys. Rev. X 10 021049
[11] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890
[12] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202
[13] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and M R Tarbutt 2018 Phys. Rev. Lett. 120 163201
[14] Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156
[15] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[16] Yin J P 2006 Phys. Rep. 430 1
[17] Adams C S, Lee H J, Davidson N, Kasevich M and Chu S 1995 Phys. Rev. Lett. 74 3577
[18] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N and Ye J 2018 Phys. Rev. Lett. 120 103201
[19] Takasu Y, Honda K, Komori K, Kuwamoto T, Kumakura M, Takahashi Y and Yabuzaki T 2003 Phys. Rev. Lett. 90 023003
[20] Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404
[21] Kuga T, Toshio Y, Shiokawa N and Hirano T 1997 Phys. Rev. Lett. 78 4713
[22] Cacciapuoti L, de Angelis M, Pierattini G and Tino G M 2001 Eur. Phys. J. D 14 373
[23] Xu P, He X, Wang J and Zhan M 2010 Opt. Lett. 35 2164
[24] Li G, Zhang S, Isenhower L, Maller K and Saffman M 2012 Opt. Lett. 37 851
[25] Dinardo B A and Anderson D Z 2016 Rev. Sci. Instrum. 87 123108
[26] Ye H P, Wan C, Huang K, Han T C, Teng J H, Ping Y S and Qiu C W 2014 Opt. Lett. 39 630
[27] Xia Y and Yin J P 2005 J. Opt. Soc. Am. B 22 529
[28] Yin J P, Gao W J and Zhu Y F 2003 Prog. Opt. 45 119
[29] Pan S Z, Pei C Y, Liu S, Wei J, Wu D, Liu Z O, Yin Y L, Xia Y and Yin J P 2018 OSA Continuum. 1 451
[30] Wang Z Z, Pei C Y, Xia M, Yin Y L, Xia Y and Yin J P 2018 J. Opt. 20 015605
[31] Yan K, Wei B, Yin Y L, Xu S P, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003
[32] Xu S P, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408
[33] Wang Z L and Yin J P 2006 Phys. Rev. A 74 013408
[1] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[2] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[3] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[4] Generation of high-energy-resolved NH3 molecular beam by a Stark decelerator with 179 stages
Bin Wei(魏斌), Shunyong Hou(侯顺永), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shengqiang Li(李胜强), Jianping Yin(印建平). Chin. Phys. B, 2019, 28(5): 053701.
[5] Effect of external magnetic field on the shift of resonant frequency in photoassociation of ultracold Cs atoms
Pengwei Li(李鹏伟), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(1): 013702.
[6] Optical Stark deceleration of neutral molecules from supersonic expansion with a rotating laser beam
Yongcheng Yang(杨永成), Shunyong Hou(侯顺永), Lianzhong Deng(邓联忠). Chin. Phys. B, 2018, 27(5): 053701.
[7] Photoassociation spectra of ultracold 85Rb2 molecule in 0u+ long range state near the 5S1/2+5P1/2 asymptote
Guodong Zhao(赵国栋), Dianqiang Su(苏殿强), Zhonghua Ji(姬中华), Tengfei Meng(孟腾飞), Yanting Zhao(赵延霆), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(8): 083301.
[8] Production of cold CN molecules by photodissociating ICN precursors in brute-force field
Wen-Xia Xu(徐文霞), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠). Chin. Phys. B, 2017, 26(5): 053702.
[9] Highly sensitive photoassociation spectroscopy of ultracold 23Na133Cs molecular long-range states below the 3S1/2+6P3/2 limit
Yanyan Liu(刘艳艳), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Xiaofeng Wang(王晓锋), Wenhao Wang(王文浩), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2017, 26(12): 123702.
[10] Microwave-mediated magneto-optical trap for polar molecules
Dizhou Xie(谢笛舟), Wenhao Bu(卜文浩), Bo Yan(颜波). Chin. Phys. B, 2016, 25(5): 053701.
[11] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
[12] High-resolution photoassociation spectroscopy of ultracold Cs2 long-range 0g- state:The external well potential depth
Liu Wen-Liang (刘文良), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(1): 013301.
[13] High resolution photoassociation spectra of an ultracold Cs2 long-range 0u+ (6S1/2+6P1/2) state
Chen Peng (陈鹏), Li Yu-Qing (李玉清), Zhang Yi-Chi (张一驰), Wu Ji-Zhou (武寄洲), Ma Jie (马杰), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2013, 22(9): 093301.
[14] Stabilizing photoassociated Cs2 molecules by optimal control
Zhang Wei (张为), Xie Ting (谢廷), Huang Yin (黄寅), Wang Gao-Ren (王高仁), Cong Shu-Lin (丛书林). Chin. Phys. B, 2013, 22(1): 013301.
[15] Suppressing the weakly bound states in the photoassociation dynamics by a frequency cut-off laser pulse
Lin Feng(林峰), Zhang Wei(张为), Zhao Ze-Yu(赵泽宇), and Cong Shu-Lin(丛书林) . Chin. Phys. B, 2012, 21(7): 073203.
No Suggested Reading articles found!