ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A crossed focused vortex beam with application to cold molecules |
Meng Xia(夏梦)1, Yaling Yin(尹亚玲)1,†, Chunying Pei(裴春莹)1, Yuer Ye(叶玉儿)1, Ruoxi Gu(顾若溪)1, Kang Yan(严康)1, Di Wu(吴迪)1, Yong Xia(夏勇)1,2,3, and Jianping Yin(印建平)1,‡ |
1 State Key Laboratory of Precision Apectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China |
|
|
Abstract We report the generation of a crossed, focused, optical vortex beam by using a pair of hybrid holograms, which combine the vortex phase and lens phase onto a spatial light modulator. We study the intensity distributions of the vortex beam in free propagation space, and the relationship of its dark spot size with the incident Gaussian beam's waist, the lens's focal length, and its orbital angular momentum. Our results show that the crossed, focused, vortex beam's dark spot size can be as small as 16.3μm and adjustable by the quantum number of the orbital angular momentum, and can be used to increase the density of trapped molecules. Furthermore, we calculate the optical potential of the blue-detuned, crossed vortex beam for MgF molecules. It is applicable to cool and trap neutral molecules by intensity-gradient-induced Sisyphus cooling, as the intensity gradient of such vortex beam is extremely high near the focal point.
|
Received: 17 March 2021
Revised: 14 April 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
42.40.Jv
|
(Computer-generated holograms)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
87.80.Cc
|
(Optical trapping)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834003 and 91836103). |
Corresponding Authors:
Yaling Yin, Jianping Yin
E-mail: ylyin@phy.ecnu.edu.cn;jpyin@phy.ecnu.edu.cn
|
Cite this article:
Meng Xia(夏梦), Yaling Yin(尹亚玲), Chunying Pei(裴春莹), Yuer Ye(叶玉儿), Ruoxi Gu(顾若溪), Kang Yan(严康), Di Wu(吴迪), Yong Xia(夏勇), and Jianping Yin(印建平) A crossed focused vortex beam with application to cold molecules 2021 Chin. Phys. B 30 114202
|
[1] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049 [2] Bohn J L, Rey A M and Ye J 2017 Science 357 1002 [3] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286 [4] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173 [5] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W and Doyle J M 2017 Phys. Rev. Lett. 119 103201 [6] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001 [7] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M and Ye J 2018 Phys. Rev. Lett. 121 213201 [8] Cheuk L W, Anderegg L, Augenbraun B L, Bao Y C, Burchesky S, Ketterle W and Doyle J M 2018 Phys. Rev. Lett. 121 083201 [9] Caldwell L, Devlin J A, Williams H J, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2019 Phys. Rev. Lett. 123 033202 [10] Ding S Q, Wu Y W, Finneran I A, Burau J J and Ye J 2020 Phys. Rev. X 10 021049 [11] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W and Doyle J M 2018 Nat. Phys. 14 890 [12] McCarron D J, Steinecker M H, Zhu Y and DeMille D 2018 Phys. Rev. Lett. 121 013202 [13] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E and M R Tarbutt 2018 Phys. Rev. Lett. 120 163201 [14] Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K K and Doyle J M 2019 Science 365 1156 [15] Grimm R, Weidemüller M and Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95 [16] Yin J P 2006 Phys. Rep. 430 1 [17] Adams C S, Lee H J, Davidson N, Kasevich M and Chu S 1995 Phys. Rev. Lett. 74 3577 [18] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N and Ye J 2018 Phys. Rev. Lett. 120 103201 [19] Takasu Y, Honda K, Komori K, Kuwamoto T, Kumakura M, Takahashi Y and Yabuzaki T 2003 Phys. Rev. Lett. 90 023003 [20] Barrett M D, Sauer J A and Chapman M S 2001 Phys. Rev. Lett. 87 010404 [21] Kuga T, Toshio Y, Shiokawa N and Hirano T 1997 Phys. Rev. Lett. 78 4713 [22] Cacciapuoti L, de Angelis M, Pierattini G and Tino G M 2001 Eur. Phys. J. D 14 373 [23] Xu P, He X, Wang J and Zhan M 2010 Opt. Lett. 35 2164 [24] Li G, Zhang S, Isenhower L, Maller K and Saffman M 2012 Opt. Lett. 37 851 [25] Dinardo B A and Anderson D Z 2016 Rev. Sci. Instrum. 87 123108 [26] Ye H P, Wan C, Huang K, Han T C, Teng J H, Ping Y S and Qiu C W 2014 Opt. Lett. 39 630 [27] Xia Y and Yin J P 2005 J. Opt. Soc. Am. B 22 529 [28] Yin J P, Gao W J and Zhu Y F 2003 Prog. Opt. 45 119 [29] Pan S Z, Pei C Y, Liu S, Wei J, Wu D, Liu Z O, Yin Y L, Xia Y and Yin J P 2018 OSA Continuum. 1 451 [30] Wang Z Z, Pei C Y, Xia M, Yin Y L, Xia Y and Yin J P 2018 J. Opt. 20 015605 [31] Yan K, Wei B, Yin Y L, Xu S P, Xu L, Xia M, Gu R X, Xia Y and Yin J P 2020 New J. Phys. 22 033003 [32] Xu S P, Xia M, Gu R X, Yin Y N, Xu L, Xia Y and Yin J P 2019 Phys. Rev. A 99 033408 [33] Wang Z L and Yin J P 2006 Phys. Rev. A 74 013408 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|