ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model |
Yuzhi Li(李禹志)1, Qingdong Wang(王青东)2, Gepu Guo(郭各朴)1, Hongyan Chu(褚红燕)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)3, Dong Zhang(章东)3 |
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China; 2 College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; 3 Institute of Acoustics, Nanjing University, Nanjing 210093, China |
|
|
Abstract To solve the difficulty of generating an ideal Bessel beam, an simplified annular transducer model is proposed to study the axial acoustic radiation force (ARF) and the corresponding negative ARF (pulling force) exerted on centered elastic spheres for acoustic-vortex (AV) beams of arbitrary orders. Based on the theory of acoustic scattering, the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated. It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions. The pulling force is more likely to exert on the sphere with a smaller k0a (product of the wave number and the radius) for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering. The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a. More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer. The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers, and suggest application potentials for multi-position stable object manipulations in biomedical engineering.
|
Received: 03 February 2020
Revised: 21 February 2020
Accepted manuscript online:
|
PACS:
|
43.25.Qp
|
(Radiation pressure?)
|
|
43.60.Fg
|
(Acoustic array systems and processing, beam-forming)
|
|
43.38.Hz
|
(Transducer arrays, acoustic interaction effects in arrays)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, and 11604156). |
Corresponding Authors:
Qingyu Ma
E-mail: maqingyu@njnu.edu.cn
|
Cite this article:
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东) Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model 2020 Chin. Phys. B 29 054302
|
[1] |
Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
|
[2] |
Zhang L and Marston P L 2011 Phys. Rev. E 84 065601
|
[3] |
Marchiano R and Thomas J L 2005 Phys. Rev. E 71 066616
|
[4] |
Lekner J 2006 J. Acoust. Soc. Am. 120 3475
|
[5] |
Marchiano R, Coulouvrat F, Ganjehi L and Thomas J L 2008 Phys. Rev. E 77 016605
|
[6] |
Demore C E M, Yang Z, Volovick A, Cochran S, MacDonald M P and Spalding G C 2012 Phys. Rev. Lett. 108 194301
|
[7] |
Volke-Sepúlveda K, Santillán A O and Boullosa R R 2008 Phys. Rev. Lett. 100 024302
|
[8] |
Santillán A O and Volke-Sepúlveda K 2009 Am. J. Phys. 77 209
|
[9] |
Li W, Dai S, Ma Q, Guo G and Ding H 2018 Chin. Phys. B 27 024301
|
[10] |
Kang S T and Yeh C K 2010 IEEE Trans. Ultrason. Ferr. Freq. Contr. 57 1451
|
[11] |
Baresch D, Thomas J L and Marchiano R 2013 J. Appl. Phys. 113 184901
|
[12] |
Skeldon K D, Wilson C, Edgar M and Padgett M J 2008 New J. Phys. 10 013018
|
[13] |
Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103
|
[14] |
Lee J, Ha K and Shung K K 2005 J. Acoust. Soc. Am. 117 3273
|
[15] |
Sapozhnikov O A and Bailey M R 2013 J. Acoust. Soc. Am. 133 661
|
[16] |
Mitri F G 2008 Ann. Phys. 323 1604
|
[17] |
Mitri F G 2015 IEEE Trans. Ultrason. Ferr. Freq. Contr. 62 1827
|
[18] |
Silva G T and Baggio A L 2015 Ultrasonics 56 449
|
[19] |
Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A 336 165
|
[20] |
Marston P L 2006 J. Acoust. Soc. Am. 120 3518
|
[21] |
Marston P L 2007 J. Acoust. Soc. Am. 122 3162
|
[22] |
Marston P L 2009 J. Acoust. Soc. Am. 125 3539
|
[23] |
Zhang L and Marston P L 2011 Phys. Rev. E 84 035601
|
[24] |
Zhang L and Marston P L 2012 J. Acoust. Soc. Am. 131 EL329
|
[25] |
Mitri F G 2009 J. Phys. A: Math. Theor. 42 245202
|
[26] |
Mitri F G 2009 Ultrasonics 49 794
|
[27] |
Mitri F G 2009 IEEE Trans. Ultrason. Ferr. Freq. Contr. 56 1059
|
[28] |
Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301
|
[29] |
McGloin D and Dholakia K 2005 Contemp. Phys. 46 15
|
[30] |
Cheng J 2011 Principles of acoustics (Beijing: Science Press) pp. 247-270
|
[31] |
Zang Y, Qiao Y, Liu J and Liu X 2019 Chin. Phys. B 28 034301
|
[32] |
Jackson J D 1999 Classical electrodynamics, 3rd edn. (New York: Wiley) pp. 96-101
|
[33] |
Arfken G B, Weber H J and Harris F E 2013 Mathematical methods for physicists (Boston: Academic Press) pp. 715-736
|
[34] |
Wang H, Liu X, Gao S, Cui J, Liu J, He A and Zhang G 2018 Chin. Phys. B 27 034302
|
[35] |
Wang Q, Li Y, Ma Q, Guo G, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901
|
[36] |
Yang L, Ma Q, Tu J and Zhang D 2013 J. Appl. Phys. 113 154904
|
[37] |
Zheng H, Gao L, Ma Q, Dai Y and Zhang D 2014 J. Appl. Phys. 115 084909
|
[38] |
Li Y, Guo G, Ma Q, Tu J and Zhang D 2017 J. Appl. Phys. 121 164901
|
[39] |
Li Y, Guo G, Tu J, Ma Q, Guo X, Zhang D and Sapozhnikov O A 2018 Appl. Phys. Lett. 112 254101
|
[40] |
Gao L, Zheng H, Ma Q, Tu J and Zhang D 2014 J. Appl. Phys. 116 024905
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|