ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam |
Xiao-Bo Yang(杨晓波)1,2,3 and Jin Hu(胡进)1,3,† |
1 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; 2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100195, China; 3 China Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China |
|
|
Abstract A method of measuring the vortex beam topological charge (TC) is proposed based on a device that can directly extract the plane wave form from the vortex beam in which the different propagation angles of the plane waves are uniquely related to the different TCs. Then the TC can be obtained by simply comparing the energy values perceived by two fixed sensors in the detection location with the help of twin omnidirectional energy absorbers (OEAs). Because the settled detection relies only on the simple quantitative value at two fixed positions, neither pattern recognition nor field analysis procedure is applied, thus allowing faster measurement. Some features of the methodology are investigated, and the numerical simulations verify the feasibility and robustness of the system.
|
Received: 04 January 2021
Revised: 24 February 2021
Accepted manuscript online: 05 March 2021
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
42.30.Kq
|
(Fourier optics)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975015, 61575022, and 61421001) and the Beijing Natural Science Foundation, China (Grant No. L191004). |
Corresponding Authors:
Jin Hu
E-mail: bithj@bit.edu.cn
|
Cite this article:
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进) Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam 2021 Chin. Phys. B 30 104203
|
[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [2] Dholakia K and Čižmár T 2011 Nat. Photon. 5 335 [3] Grier D G 2003 Nature 424 810 [4] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 042320 [5] Vaziri A, Pan J W, Jennewein T, Weihs G and Zeilinger A 2003 Phys. Rev. Lett. 91 227902 [6] Aiello A, Oemrawsingh S S R, Eliel E R and Woerdman J P 2005 Phys. Rev. A 72 052114 [7] Djordjevic I B 2011 Opt. Express 19 14277 [8] Wang J, Yang J-Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [9] Ren Y, Wang Z, Xie G, Li L, Cao Y, Liu C, Liao P, Yan Y, Ahmed N, Zhao Z, Willner A, Ashrafi N, Ashrafi S, Linquist R D, Bock R, Tur M, Molisch A F and Willner A E 2015 Opt. Lett. 40 4210 [10] Li L and Li F 2013 Phys. Rev. E 88 033205 [11] Barbieri C, Tamburini F, Anzolin G, Bianchini A, Mari E, Sponselli A, Umbriaco G, Prasciolu M, Romanato F and Villoresi P 2009 Earth Moon Planet 105 283 [12] Lavery M P J, Speirits F C, Barnett S M and Padgett M J 2013 Science 341 537 [13] Hakobyan D and Brasselet E 2015 Opt. Express 23 31230 [14] Lavery M P J, Barnett S M, Speirits F C and Padgett M J 2014 Optica 1 1 [15] Li X, Tai Y, Lv F and Nie Z 2015 Opt. Commun. 334 235 [16] Ma H, Li X, Tai Y, Li H, Wang J, Tang M, Wang Y, Tang J and Nie Z 2017 Opt. Lett. 42 135 [17] Liu Y and Pu J 2011 Opt. Commun. 284 2424 [18] Bahl M and Senthilkumaran P 2015 Phys. Rev. A 92 013831 [19] Brandão P A and Cavalcanti S B 2016 Phys. Lett. A 380 4013 [20] Guo C S, Lu L L and Wang H T 2009 Opt. Lett. 34 3686 [21] Jian-Long L 2010 Chin. Phys. B 19 104001 [22] Ji Z Y and Zhou G Q 2017 Chin. Phys. B 26 094202 [23] Ghai D P, Senthilkumaran P and Sirohi R S 2009 Opt. Lasers Eng. 47 123 [24] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999 [25] Liu R, Long J, Wang F, Wang Y, Zhang P, Gao H and Li F 2013 J. Opt 15 125712 [26] Fu D, Chen D, Liu R, Wang Y, Gao H, Li F and Zhang P 2015 Opt. Lett. 40 788 [27] Zhu J, Zhang P, Chen D, Liu R, Zhou Y, Wang J, Gao H and Li F 2018 Appl. Opt. 57 B39 [28] Guo C S, Yue S J and Wei G X 2009 Appl. Phys. Lett. 94 231104 [29] Zhao Q, Dong M, Bai Y and Yang Y 2020 Photon. Res. 8 745 [30] Narag J P C and Hermosa N 2019 Phys. Rev. Appl. 11 054025 [31] Dai K, Gao C, Zhong L, Na Q and Wang Q 2015 Opt. Lett. 40 562 [32] Saitoh K, Hasegawa Y, Hirakawa K, Tanaka N and Uchida M 2013 Phys. Rev. Lett. 111 074801 [33] Zheng S and Wang J 2017 Sci. Rep. 7 40781 [34] Guzzinati G, Clark L, Béché A and Verbeeck J 2014 Phys. Rev. A 89 025803 [35] Gao C, Qi X, Liu Y, Xin J and Wang L 2011 Opt. Commun. 284 48 [36] Leach J, Courtial J, Skeldon K, Barnett S M, Franke-Arnold S and Padgett M J 2004 Phys. Rev. Lett. 92 013601 [37] Leach J, Padgett M J, Barnett S M, Franke-Arnold S and Courtial J 2002 Phys. Rev. Lett. 88 257901 [38] Pors J B, Aiello A, Oemrawsingh S S R, van Exter M P, Eliel E R and Woerdman J P 2008 Phys. Rev. A 77 033845 [39] Berkhout G C G, Lavery M P J, Padgett M J and Beijersbergen M W 2011 Opt. Lett. 36 1863 [40] Oemrawsingh S S R, Eliel E R, Nienhuis G and Woerdman J P 2004 J. Opt. Soc. Am. A 21 2089 [41] Guo Z Y, Qu S L, Sun Z H and Liu S T 2008 Chin. Phys. B 17 4199 [42] Harris M, Hill C A, Tapster P R and Vaughan J M 1994 Phys. Rev. A 49 3119 [43] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W and Padgett M J 2010 Phys. Rev. Lett. 105 153601 [44] Lavery M P J, Berkhout G C G, Courtial J and Padgett M J 2011 J. Opt 13 064006 [45] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y and Yu S 2018 Phys. Rev. Lett. 120 193904 [46] Prabhakar S, Kumar A, Banerji J and Singh R P 2011 Opt. Lett. 36 4398 [47] Zhang X, Xia T, Cheng S and Tao S 2019 Opt. Commun. 431 238 [48] Han Y and Zhao G 2011 Opt. Lett. 36 2017 [49] Vaity P, Banerji J and Singh R P 2013 Phys. Lett. A 377 1154 [50] Liu A P, Xiong X, Ren X F, Cai Y J, Rui G H, Zhan Q W, Guo G C and Guo G P 2013 Sci. Rep. 3 2402 [51] Zhang Z, Dong F, Qian K, Zhang Q, Chu W, Zhang Y, Ma X and Wu X 2015 Opt. Express 23 20521 [52] Genevet P, Lin J, Kats M A and Capasso F 2012 Nat. Commun. 3 1278 [53] Rui G, Gu B, Cui Y and Zhan Q 2016 Sci. Rep. 6 28262 [54] Abramowitz M and Stegun I A 1948 Handbook of mathematical functions with formulas, graphys, and mathematical tables (US Government Printing Office) [55] Narimanov E E and Kildishev A V 2009 Appl. Phys. Lett. 95 041106 [56] Chang Z and Hu G 2012 Appl. Phys. Lett. 101 054102 [57] Goodman J W 1996 Introduction to Fourier Optics, 3rd edn. (McGraw-Hill) [58] Ozaktas H M and Mendlovic D 1995 J. Opt. Soc. Am. A 12 743 [59] Yang X and Hu J 2018 Opt. Express 26 27528 [60] Eberhard Z 2004 Oxford users' guide to mathematics (Oxford University Press) [61] Cheng Q, Cui T J, Jiang W X and Cai B G 2010 New J. Phys. 12 063006 [62] Wang H W and Chen L W 2011 J. Appl. Phys. 109 103104 [63] Lu W, Jin J, Lin Z and Chen H 2010 J. Appl. Phys. 108 064517 [64] Jonušauskas L, Gailevičius D, Rekštytė S, Baldacchini T, Juodkazis S and Malinauskas M 2018 Opt. Express 27 15205 [65] Bandyopadhyay A and Heer B 2018 Materials Science and Engineering: R: Reports 129 1 [66] Tian X, Yin M and Li D 2016 RPJ 22 251 [67] Jiang W X, Ge S, Han T, Zhang S, Mehmood M Q, Qiu C W and Cui T J 2016 Adv. Sci. 3 1600022 [68] Yin L, Doyhamboure-Fouquet J, Tian X and Li D 2018 Composites Part B: Engineering 132 178 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|