CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of surface modification on the radiation stability of diamond ohmic contacts |
Lian-Xi Mu(牟恋希)1, Shang-Man Zhao(赵上熳)1, Peng Wang(王鹏)1, Xiao-Lu Yuan(原晓芦)2, Jin-Long Liu(刘金龙)1,†, Zhi-Fu Zhu(朱志甫)3, Liang-Xian Chen(陈良贤)1, Jun-Jun Wei(魏俊俊)1, Xiao-Ping Ou-Yang(欧阳晓平)4, and Cheng-Ming Li(李成明)1,‡ |
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; 2 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3 School of Information Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China; 4 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China |
|
|
Abstract The ohmic contact interface between diamond and metal is essential for the application of diamond detectors. Surface modification can significantly affect the contact performance and eliminate the interface polarization effect. However, the radiation stability of a diamond detector is also sensitive to surface modification. In this work, the influence of surface modification technology on a diamond ohmic contact under high-energy radiation was investigated. Before radiation, the specific contact resistivities ($\rho_{\rm c}$) between Ti/Pt/Au-hydrogen-terminated diamond (H-diamond) and Ti/Pt/Au-oxygen-terminated diamond (O-diamond) were $2.0 \times 10^{-4}$ $\Omega \cdot $cm$^{2}$ and $4.3 \times 10^{-3}$ $\Omega \cdot $cm$^{2}$, respectively. After 10 MeV electron radiation, the $\rho_{\rm c}$ of Ti/Pt/Au H-diamond and Ti/Pt/Au O-diamond were $5.3 \times 10^{-3}$ $\Omega \cdot $cm$^{2}$ and $9.1 \times 10^{-3}$ $ \Omega \cdot $cm$^{2}$, respectively. The rates of change of $\rho_{\rm c}$ of H-diamond and O-diamond after radiation were 2550% and 112%, respectively. The electron radiation promotes bond reconstruction of the diamond surface, resulting in an increase in $\rho_{\rm c}$.
|
Received: 13 May 2023
Revised: 29 June 2023
Accepted manuscript online: 11 July 2023
|
PACS:
|
68.47.Fg
|
(Semiconductor surfaces)
|
|
71.55.Cn
|
(Elemental semiconductors)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3608601). |
Corresponding Authors:
Jin-Long Liu, Cheng-Ming Li
E-mail: liujinlong@ustb.edu.cn;chengmli@mater.ustb.edu.cn
|
Cite this article:
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明) Effect of surface modification on the radiation stability of diamond ohmic contacts 2024 Chin. Phys. B 33 026801
|
[1] Verona C, Ciccognani W, Colangeli S, Limiti E, Marinelli M, Santoni E, Verona-Rinati G, Angelone M, Pillon M, Pompili F, Benetti M, Cannata D and Di Pietrantonio F 2016 IEEE Electron Dev. Lett. 37 1597 [2] Yamaguchi T, Umezawa H, Ohmagari S, Koizumi H and Kaneko JH 2021 Appl. Phys. Lett. 118 162105 [3] Esposito B, Marocco D, Gandolfo G, et al. 2022 J. Fusion Energy 41 22 [4] Qu Y F, Zang L G, Chen W, Hou Y M, Lu J and Luo Y 2022 Rev. Sci. Instrum. 93 113507 [5] Zhang Z F, Lin C N, Yang X, Tian Y Z, Gao C J, Li K Y, Zang J H, Yang X G, Dong L and Shan C X 2021 Carbon 173 427 [6] Girolami M, Serpente V, Mastellone M, Tardocchi M, Rebai M, Xiu, Q L, Liu J L, Sun Z J, Zhao Y B, Valentini V and Trucchi D M 2022 Carbon 189 27 [7] Galbiati A, Lynn S, Oliver K, Schirru F, Nowak T, Marczewska B, Duenas J A, Berjillos R, Martel I and Lavergne L 2009 IEEE Transactions on Nuclear Science 56 1863 [8] Wang J C, Chen H, Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q D, Li A L and Li H D 2021 Chin. Phys. B 30 096803 [9] Su K, Pen Z Y, Zhang J F, Liu L Y, Zhang J C, Zhang Y C, He Q, Zhang C F, Ouyang X P and Hao Y 2020 Appl. Phys. Lett. 116 092104 [10] Okhapkin A I, Yunin P A, Arkhipova E A, Kraev S A, Korolyov S A, Drozdov M N and Shashkin V I 2020 Semiconductors 54 1056 [11] Hoffman A, Laikhtman A, Ustaze S, Hamou M H, Hedhili M N, Guillotin J P, Le Coat Y and Azria R 2002 J. Appl. Phys. 91 4726 [12] Grilj V, Skukan N, Jaksic M, Pomorski M, Kada W, Kamiya T and Ohshima T 2016 Nucl. Instrum. Meth. B 372 161 [13] Ade N, Nam T L, Derry T E and Mhlanga S H 2014 Radiat. Phys. Chem. 98 155 [14] Hoshino Y, Saito Y and Nakata J 2010 J. Appl. Phys. 49 101302 [15] Bergman L and Nemanich R J 1995 J. Appl. Phys. 78 6709 [16] Lee E H, Hembree D M, Rao G R and Mansur L K 1993 Phys. Rev. B 48 15540 [17] Ostrovskaya L, Perevertailo V, Ralchenko V, Dementjev A and Loginova O 2002 Diam. Relat. Mater. 11 845 [18] Tu J L, Shi J D, Chen L X, Liu J L, Li C M and Wei J J 2022 Int. J. Heat Mass Transfer 199 123481 [19] Kawarada H 1996 Surf. Sci. Rep. 26 205 [20] Berger H H 1972 Solid-State Electronics 15 145 [21] Zhao D, Li F N, Liu Z C, Chen X D, Wang Y F, Shao G Q, Zhu T F, Zhang M H, Zhang J W, Wang J J, Wang W and Wang H X 2018 Appl. Surf. Sci. 443 361 [22] Chen Y G, Ogura A, Yamasaki S and Okushi H 2004 Diam. Relat. Mater. 13 2121 [23] Hirama K, Takayanagi H, Yamauchi S, Yang J H, Kawarada H and Umezawa H 2008 Appl. Phys. Lett. 92 112107 [24] Sauerer C, Ertl F, Nebel C E, Stutzmann M, Bergonzo P, Williams O A and Jackman R A 2001 Phys. Status Solidi A 186 241 [25] Strobel P, Riedel M, Ristein J and Ley L 2004 Nature 430 439 [26] Edmonds M T, Pakes C I, Mammadov S, Zhang W, Tadich A, Ristein J and Ley L 2011 Phys. Status Solidi A 208 2062 [27] Maier F, Riedel M, Ristein J and Ley L 2001 Diam. Relat. Mater. 10 506 [28] Kono S, Saitou T, Kawata H, Goto T, Kakefuda Y and Komeda T 2009 Surf. Sci. 603 860 [29] Maier F, Ristein J and Ley L 2001 Phys. Rev. B 64 165411 [30] Zhang S, Liu K, Liu B J, Zhang X H, Qiao P F, Zhao J W, Li Y C, Hao X B, Liang Y, Liang B, Zhang W C, Dai B, Han J C and Zhu J Q 2023 Carbon 205 69 [31] Foord J S, Hian L C and Jackman R B 2001 Diam. Relat. Mater. 10 710 [32] Bai M J, Liu J L, Jiang H, Li W J, Wei J J, Chen L X, Miao J Y and Li C M 2022 Tribol. Int. 176 107910 [33] Wei K T, Li J, Liu B Y, Wu R R, Wei Q, Wu S L, Hu W B and Wang H X 2019 Vacuum 172 109046 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|