Special Issue:
SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
|
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) |
Prev
Next
|
|
|
Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite |
Zi-Rui Jia(贾梓睿)1,2, Zhen-Guo Gao(高振国)1,3, Di Lan(兰笛)1, Yong-Hong Cheng(成永红)2, Guang-Lei Wu(吴广磊)2,3, Hong-Jing Wu(吴宏景)1 |
1 School of Science, Northwestern Polytechnical University, Xi'an 710072, China;
2 Center of Nanomaterials for Renewable Energy(CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
3 Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China |
|
|
Abstract Epoxy-based composites containing montmorillonite (MMT) modified by silylation reaction with γ-aminopropyltriethoxysilane (γ-APTES) and 3-(glycidyloxypropyl) trimethoxysilane (GPTMS) are successfully prepared. The effects of filler loading and surface modification on the electrical and thermal properties of the epoxy/MMT composites are investigated. Compared with the pure epoxy resin, the epoxy/MMT composite, whether MMT is surface-treated or not, shows low dielectric permittivity, low dielectric loss, and enhanced dielectric strength. The MMT in the epoxy/MMT composite also influences the thermal properties of the composite by improving the thermal conductivity and stability. Surface functionalization of MMT not only conduces to the better dispersion of the nanoparticles, but also significantly affects the electric and thermal properties of the hybrid by influencing the interfaces between MMT and epoxy resin. Improved interfaces are good for enhancing the electric and thermal properties of nanocomposites. What is more, the MMT modified with GPTMS rather than γ-APTES is found to have greater influence on improving the interface between the MMT filler and polymer matrices, thus resulting in lower dielectric loss, lower electric conductivity, higher breakdown strength, lower thermal conductivity, and higher thermal stability.
|
Received: 04 July 2018
Revised: 28 August 2018
Accepted manuscript online:
|
PACS:
|
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
81.65.-b
|
(Surface treatments)
|
|
77.22.Jp
|
(Dielectric breakdown and space-charge effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21806129, 51872238, 51407134, and 51521065), the China Postdoctoral Science Foundation (Grant No. 2016M590619), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016EEQ28), the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE14107), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102018zy045), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JQ5116). |
Corresponding Authors:
Yong-Hong Cheng, Hong-Jing Wu
E-mail: cyh@mail.xjtu.edu.cn;wuhongjing@mail.nwpu.edu.cn
|
Cite this article:
Zi-Rui Jia(贾梓睿), Zhen-Guo Gao(高振国), Di Lan(兰笛), Yong-Hong Cheng(成永红), Guang-Lei Wu(吴广磊), Hong-Jing Wu(吴宏景) Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite 2018 Chin. Phys. B 27 117806
|
[1] |
Marconnet A M, Yamamoto N, Panzer M A, Wardle L B and Goodson E K 2011 ACS Nano 5 4818
|
[2] |
Gulotty R, Castellino M, Jagdale P, Tagliaferro A and Balandin A A 2013 ACS Nano 7 5114
|
[3] |
Qu S H, Yu Y K, Lin K J, Liu P Y, Zheng C H, Wang L D, Xu T T, Wang Z D and Wu H J 2018 J. Mater. Sci. Mater. Electron. 29 1232
|
[4] |
Jia Z R, Lin K J, Wu G L, Xing H and Wu H J 2018 Nano 13 1830005
|
[5] |
Feng A L, Wu G L, Pan C and Wang Y Q 2017 J. Nanosci. Nanotechnol. 17 3859
|
[6] |
Kim P, Jones S C, Hotchkiss P J, Kippelen B, Marder S R and Perry J W 2007 Adv. Mater. 19 1001
|
[7] |
Wu G L, Cheng Y H, Wang K K, Wang Y Q and Feng A L 2016 J. Mater. Sci.:Mater. Electron. 27 5592
|
[8] |
Yosefi N, Sun X Y, Lin X Y, Shen X, Jia J J, Zhang B, Tang B Z, Chan M S and Kim J K 2014 Adv. Mater. 26 5480
|
[9] |
Huang X Y and Jiang P K 2015 Adv. Mater. 27 546
|
[10] |
Wan L, Zhang X, Wu G L and Feng A L 2017 High Volt. 2 167
|
[11] |
Feng Y, Li W L, Hou Y F, Yu Y, Cao W P, Zhang T D and Fei W D 2015 J. Mater. Chem. C 3 1250
|
[12] |
Zhang C, Li A, Zhao Y H, Bai S L and Zhang Y F 2018 Compos. Part. B Eng. 135 201
|
[13] |
Feng A L, Jia Z R, Yu Q, Zhang H X and Wu G L 2018 Nano 13 1850037
|
[14] |
Xie Q, Cheng Y H, Chen S Y, Wu G L, Wang Z D and Jia Z R 2017 J. Mater. Sci.:Mater. Electron. 28 17871
|
[15] |
Li Y Y, Tian M Q, Lei Z P and Zhang J H 2018 J. Phys. D:Appl. Phys. 51 125309
|
[16] |
Wu G L, Li J L, Wang K K, Wang Y Q, Pan C and Feng A L 2017 J. Mater. Sci.:Mater. Electron. 28 6544
|
[17] |
Ianchis R, Rosca I D, Ghiurea M, Spataru C I, Nicolae C A, Gabor R, Raditoiu V, Preda S, Fierascu R C and Donescu D 2015 Appl. Clay Sci. 103 28
|
[18] |
Tanaka T, Ohki Y, Ochi M, Harada M and Imai T 2007 IEEE Trans. Dielectr. Electr. Insul. 15 81
|
[19] |
Yang K, Huang X Y, Fang L J, He J L and Jiang P K 2014 Nanoscale 6 14740
|
[20] |
Pan C, Zhang J Q, Kou K C, Zhang Y and Wu G L 2018 Int. J. Heat Mass Transfer 120 1
|
[21] |
Azeez A A, Rhee K Y, Park S J and Hui D 2013 Compos. Part. B Eng. 45 308
|
[22] |
Thelakkadan A S, Coletti G, Guastavino F and Fina A 2011 Polym. Compos. 32 1499
|
[23] |
Huang Y, Min D M, Li S T, Wang X and Lin S J 2017 IEEE Trans. Dielectr. Electr. Insul. 24 3083
|
[24] |
Lin J J, Chan Y N and Lan Y F 2010 Materials 3 2588
|
[25] |
Osman M A, Rupp J E P and Suter U W 2005 Polymer 46 1653
|
[26] |
Piscitelli F, Scamardella A M, Romeo V, Lavorgna M, Barra G and Amendola E 2012 J. Appl. Polym. Sci. 124 616
|
[27] |
Choi Y Y, Lee S H and Ryu S H 2009 Polym. Bull. 63 47
|
[28] |
Zhou W Y 2011 J. Mater. Sci. 46 3883
|
[29] |
Chu P F, Zhang H, Zhao J, Gao F, Guo Y F, Dang B and Zhang Z 2017 Compos. Part. A-Appl. S. 99 139
|
[30] |
Gao M Z and Zhang P H 2016 Acta Phys. Sin. 65 247802(in Chinese)
|
[31] |
Essabir H, Boujmal R, Bensalah M O, Rodrigue D, Bouhfid R and Qaiss A E K 2016 Mech. Mater. 98 36
|
[32] |
Su L N, Tao Q, He H P, Zhu J X, Yuan P and Zhu R L 2013 J. Colloid Interface Sci. 391 16
|
[33] |
Tuncer E, Sauers I, James D R, Ellis A R, Paranthaman M P, Aytuǧ T, Sathyamurthy S, More K L, Li J and Goyal A 2007 Nanotechnology 18 025703
|
[34] |
Kripotou S, Pissis P, Savelyev Y V, Robota L P and Travinskaya T V 2010 J. Macromol. Sci. Part. B 49 86
|
[35] |
Singha S and Thomas M J 2009 IEEE Trans. Dielectr. Electr. Insul. 16 531
|
[36] |
Fothergill J C, Nelson J K and Fu M 2004 Conference on Electrical Insulation & Dielectric Phenomena, October 17-202004, Boulder, USA, p. 406
|
[37] |
Singha S and Thomas M J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 12
|
[38] |
Morales A G and Taylor A C 2014 J. Mater. Sci. 49 1574
|
[39] |
Renukappa R N M, Chikkakuntappa R and Kunigal N S 2011 Polym. Eng. Sci. 51 1827
|
[40] |
Wu H J, Qu S H, Lin K J, Qing Y C, Wang L D, Fan Y C, Fu Q H and Zhang F L 2018 Powder Technol. 333 153
|
[41] |
Yu Y K, Qu S H, Zang D Y, Wang L D and Wu H J 2018 Nanoscale Res. Lett. 13 50
|
[42] |
Wu H J, Wu G L, Ren Y Y, Yang L, Wang L D and Li X H 2015 J. Mater. Chem. C 3 7677
|
[43] |
Wu H, Wang L, Wu H J and Lian Q 2014 Appl. Phys. A 115 1299
|
[44] |
Guo S L, Wang L D, Wang Y, Wu H J and Shen Z Y 2013 Chin. Phys. B 22 044101
|
[45] |
Wu H J, Wang L D, Guo S L and Shen Z Y 2012 Appl. Phys. A 108 439
|
[46] |
Mohamed A T 2015 Adv. Electr. Electron. Eng. 13 182
|
[47] |
Mohamed A T 2015 Int. J. Electr. Power Energy Syst. 64 469
|
[48] |
Dou X Y, Zhou Q, Chen X H, Tan Y Q, He X, Lu P, Sui K Y, Tang B Z, Zhang Y M and Yuan W Z 2018 Biomacromolecules 19 2014
|
[49] |
Wu G L, Cheng Y H, Wang Z D, Wang K K and Feng A L 2017 J. Mater. Sci.:Mater. Electron. 28 576
|
[50] |
Nelson J K and Fothergill J C 2004 Nanotechnology 15 586
|
[51] |
Li S T, Zhong L S, Li J Y and Chen G 2010 IEEE Electr. Insul. Mag. 26 14
|
[52] |
Wu G L, Wang Y Q, Wang K K and Feng A L 2016 RSC Adv. 6 102542
|
[53] |
Huang X Y, Iizuka T, Jiang P K, Ohki Y and Tanaka T 2012 J. Phys. Chem. C 116 13629
|
[54] |
Helal E, David E, Fréchette M and Demarquette N R 2017 Eur. Polym. J. 94 68
|
[55] |
Fang J F, Shi L Y, Zhang D S, Zhong Q D and Chen Y 2010 Polym. Eng. Sci. 50 1809
|
[56] |
Ray S S and Okamoto M 2003 Prog. Ploym. Sci. 28 1539
|
[57] |
Park S J, Seo D I and Lee J R 2002 J. Colloid Interf. Sci. 251 160
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|