Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 126801    DOI: 10.1088/1674-1056/24/12/126801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H-SiC

Zhou Tian-Yu (周天宇)a b, Liu Xue-Chao (刘学超)a, Huang Wei (黄维)a, Zhuo Shi-Yi (卓世异)a, Zheng Yan-Qing (郑燕青)a, Shi Er-Wei (施尔畏)a
a Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, China;
b Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  A Ni/Ta bilayer is deposited on n-type 6H-SiC and then annealed at different temperatures to form an ohmic contact. The electrical properties are characterized by I-V curve measurement and the specific contact resistance is extracted by the transmission line method. The phase formation and microstructure of the Ni/Ta bilayer are studied after thermal annealing. The crystalline and microstructure properties are analyzed by using glance incident x-ray diffraction (GIXRD), Raman spectroscopy, and transmission electron microscopy. It is found that the transformation from the Schottky to the Ohmic occurs at 1050 ℃ and the GIXRD results show a distinct phase change from Ta2C to TaC at this temperature. A specific contact resistance of 6.5× 10-5Ω · cm2 is obtained for sample Ni(80 nm)/Ta(20 nm)/6H-SiC after being annealed at 1050 ℃. The formation of the TaC phase is regarded as the main reason for the excellent Ohmic properties of the Ni/Ta contacts to 6H-SiC. Raman and TEM data reveal that the graphite carbon is drastically consumed by the Ta element, which can improve the contact thermal stability. A schematic diagram is proposed to illustrate the microstructural changes of Ni/Ta/6H-SiC when annealed at different temperatures.
Keywords:  SiC      Ohmic contact      Ni/Ta  
Received:  21 April 2015      Revised:  28 July 2015      Accepted manuscript online: 
PACS:  68.47.Fg (Semiconductor surfaces)  
  73.40.Ns (Metal-nonmetal contacts)  
Fund: Project supported by the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Shanghai Rising-star Program, China (Grant No. 13QA1403800), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), and the National High-tech Research and Development Program of China (Grant Nos. 2013AA031603 and 2014AA032602).
Corresponding Authors:  Liu Xue-Chao     E-mail:  xcliu@mail.sic.ac.cn

Cite this article: 

Zhou Tian-Yu (周天宇), Liu Xue-Chao (刘学超), Huang Wei (黄维), Zhuo Shi-Yi (卓世异), Zheng Yan-Qing (郑燕青), Shi Er-Wei (施尔畏) Electrical properties and microstructural characterization of Ni/Ta contacts to n-type 6H-SiC 2015 Chin. Phys. B 24 126801

[1] Nakamura D, Gunjishima I, Yamaguchi S, Ito T, Okamoto A, Kondo H, Onda S and Takatori K 2004 Nature 430 1009
[2] Kang M S, Ahn J J, Moon K S and Koo S M 2012 Nanoscale Res. Lett. 7 1
[3] Zhang Y, Gajjala G, Hofmann T, Weinhardt L, Bar M, Heske C, Seelmann-Eggebert M and Meisen P 2010 J. Appl. Phys. 108 093702
[4] Zhu K, Johnstone D, Leach J, Fu Y, Morkoc H, Li G and Ganguly B 2007 Superlattices Microstruct. 41 264
[5] Chen S Z and Sheng K 2014 Chin. Phys. B 23 077201
[6] Wang X D, Deng X C, Wang Y W, Wang Y, Wen Y and Zhang B 2014 Chin. Phys. B 23 057203
[7] Park J H and Holloway P H 2005 J. Vac. Sci. Technol. B 23 486
[8] Olowolafe J O, Solomon J S, Mitchel W and Lampert W V 2005 Thin Solid Films 479 59
[9] Zhang Y P, Chen Z Z, Lu W Y, Tan J H, Cheng Y and Shi W Z 2014 Chin. Phys. B 23 057303
[10] Porter L M and Davis R F 1995 Mat. Sci. Eng. B-Solid 34 83
[11] Ito K, Onishi T, Takeda H, Kohama K, Tsukimoto S, Konno M, Suzuki Y and Murakami M 2008 J. Electron. Mater. 37 1674
[12] Cole M W, Joshi P C and Ervin M 2001 J. Appl. Phys. 89 4413
[13] Roccaforte F, La Via F, Raineri V, Musumeci P, Calcagno L and Condorelli G G 2003 Appl. Phys. a-Mater. 77 827
[14] Jung K, Sutou Y and Koike J 2012 Thin Solid Films 520 6922
[15] Siad M, Abdesselam M, Souami N and Chami A C 2011 Appl. Surf. Sci. 257 10737
[16] Leroy W P, Detavernier C, Van Meirhaeghe R L and Lavoie C 2007 J. Appl. Phys. 101 053714
[17] Zhou T Y, Liu X C, Dai C C, Huang W, Zhuo S Y and Shi E W 2014 Mater. Sci. Eng. B: Adv. 188 59
[18] Jang T, Porter L M, Rutsch G W M and Odekirk B 1999 Appl. Phys. Lett. 75 3956
[19] Li R F, Guo Z N, Yang J J, Zeng X P and Yuan W X 2012 Monatsh. Chem. 143 1329
[20] Berger H H 1972 Solid-State Electron. 15 145
[21] Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W and Wang D J 2012 Appl. Phys. Lett. 100 263503
[22] Levit M, Grimberg I and Weiss B Z 1996 J. Appl. Phys. 80 167
[23] Kang C Y, Fan L L, Chen S, Liu Z L, Xu P S and Zou C W 2012 Appl. Phys. Lett. 100 251604
[24] Escobedo-Cousin E, Vassilevski K, Hopf T, Wright N, O'Neill A, Horsfall A, Goss J and Cumpson P 2013 J. Appl. Phys. 113 114309
[25] Huang L Q, Zhu Q Z, Gao M C, Qin F W and Wang D J 2012 Jpn. J. Appl. Phys. 51 081302
[26] Price D L, Cooper B R and Wills J M 1993 Phys. Rev. B 48 15311
[27] Shamuilia S, Afanasév V V, Stesmans A, Schram T and Pantisano L 2008 J. Appl. Phys. 104 073722
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[12] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[13] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[14] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[15] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
No Suggested Reading articles found!